

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2428708, IEEE Transactions on Computers

SUBMITTED FOR PUBLICATION, IEEE TRANSACTIONS ON COMPUTERS 6

Journal Entry Table PhaseState
V PN L1 L2 M [lba] No

S0 φ null null vpnold

S1 X null null vpnold

S2 vpnshdw null null vpnold

S3 vpnshdw X null vpnold

S4 vpnshdw lba null vpnold

S5 vpnshdw lba X vpnold

S6 vpnshdw lba lba vpnold

3

S7 vpnshdw lba lba X
S8 vpnshdw lba lba vpnshdw

4

S9 vpnshdw X lba vpnshdw

S10 vpnshdw null lba vpnshdw

S11 vpnshdw null X vpnshdw

5

TABLE 2: States of nvramdisk (φ = Don’t care)

S
0

S
8

S
3

S
6

S
10

S
2

S
4

S
1

S
7

S
11

S
9

S
0
’

Intermediate

State
Fault

State
RecoveryNormal

S
5

Fig. 6: State Diagram of nvramdisk Write

each of which corresponds to a different state. Table 2 shows
the 12 steps in mapping table journaling. When the system
crashes while updating a certain field, value of the field is
marked ’X’. Initially, all lba fields, L1 and L2, are NULL.
OS does not need VPN field if L1 and L2 are NULL. The
initial value of VPN field is Don’t Care (φ).

At the start of transactional block write, nvramdisk allo-
cates a shadow block and a journal record in the allocation
phase (Table 1). Then, nvramdisk performs block write to
the shadow block allocated. Once this is done, nvramdisk
starts journaling. The initial state of journaling is S0, where
all lba fields are NULL, <φ, NULL, NULL, vpnold >.
nvramdisk journals the virtual page number of the shadow
block where a new block is written, vpnshdw. If nvramdisk
fails to journal the shadow block index in the middle of an
update, the VPN field will contain corrupt value (S1). If it
succeeds, the journal entry holds shadow block index in its
VPN field (S2). Then, nvramdisk makes two replicas in the
journal record. From S2, the state changes to S4 if the first
replica of logical block number is recorded successfully. If it
fails, it goes to S3. For the second replica, the same rule is
applied. S6 denotes the state at which two replicas are suc-
cessfully recorded. After recording two replicas, nvramdisk
checkpoints the journal; updates the mapping table entry
to refer to the new location for a given logical block (S8).
After checkpoint, the process is complete. The journal entry
is reset via writing NULL to two fields for logical block
number. When all LBA fields are reset to NULL successfully,
the system goes to the initial state, S0.

Let us explain the recovery procedure. In case of system
failure, nvramdisk performs either undo or redo based on the

state of the system. When the system is found to be in one
of S0, . . . , S5, recovery procedure simply performs “undo”,
i.e., resets all lba fields to NULL. The system state reverts to
S0 and the mapping table remains intact. When the system
is in one of S6, . . . , S11, the recovery procedure performs
“redo”, i.e., the system updates the mapping table using
the journal and performs clean-up. This leads the system to
a new initial state, S′

0. Fig. 6 illustrates the state transition
diagram. There are three types of states: initial state, normal
state, and fault state. The initial state is denoted by double
circle. The normal states are the ones with single circle
with white background. It denotes valid states. The fault
states are the circles with black background. The solid lines
denote normal state transitions. The dotted lines denote
state transitions caused by system crash. The dashed-dotted
lines denote state transitions caused by recovery procedure.

6 TYPE-DEPENDENT ORDERING GUARANTEE

6.1 Synopsis: Guaranteeing the Order
Despite the non-volatility of NVRAM device, it is possible
that power failure causes data loss in the volatile layer of
the memory hierarchy, e.g., TLB, CPU cache, etc. It is critical
that the contents in the volatile layer are properly synchro-
nized with the NVRAM in case of power failure. Bhandari
et.al. [31] showed write-through mechanism yields the best
performance for ordering guarantee. However, Their work
focuses on guaranteeing the order among all pairs of store
instructions. In nvramdisk, shadow block mechanism along
with mapping table journaling guarantees the atomicity of
the block write operation. It is not required to guarantee the
order among the store instructions for writing a data block.

We examined the overheads of the various ordering
guarantee methods and propose to apply different ordering
guarantee schemes subject to the access characteristics of the
respective NVRAM regions; data block, mapping table, and
journal.

There are a number of factors that determine the order in
which “memory writes” are physically reflected in memory:
(i) cache policy (write-back, write-through, write combining
vs. uncachable), (ii) type of store instruction (movq vs.
movntq), and (iii) use of explicit cache line flush (clflush)
and memory barrier (mfence and sfence). Let us briefly
explain each of these attributes. There are three caching poli-
cies: write-back, write-through, and uncacheable. In write-
back (WB) policy, cache contents are occasionally written
to memory via a certain eviction policy, e.g., LRU. The
unit of eviction is cache line. In write-through policy (WT),
when a cache line is written, the respective contents are
also written in memory. Unlike in write-back method, only
the updated words are written to memory in write-through
mode. In uncachable policy, cache is not used. There are
two types of write instructions: temporal instructions, e.g.,
movq and non-temporal instructions, e.g., movntq. movq
writes to cache and movntq writes directly to memory.
We can preserve the ordering via explicitly flushing the
cache contents or via using barrier instruction. clflush
is an instruction which flushes a given cache line. There
are two types of barrier instructions: mfence and sfence.
All load and store instructions that precede the mfence
instruction in program order become globally visible before

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2428708, IEEE Transactions on Computers

SUBMITTED FOR PUBLICATION, IEEE TRANSACTIONS ON COMPUTERS 7

Method Cache Store Flush BarrierPolicy Method

MCF WB movq clflush
mfence

/ sfence

MNT WB movntq none mfence
/ sfence

MWT WT movq none none
MUC UC movq none none

MWC WC movq none mfence
/ sfence

TABLE 3: Ordering Guarantee Programming Methods

all load/store instructions that appear after the mfence
instruction in the program order. sfence serializes only
store instructions.

Combining these options, we define five methods for
ordering guarantee: MCF , MNT , MWT , MUC , and MWC

(Table 3). MCF uses explicit cache flush and memory barrier.
MNT uses non-temporal command with barrier. MWT uses
write-through instruction. MUC sets the caching policy to
uncacheable. MWC uses explicit memory barrier to flush the
contents on write-combining buffer into NVRAM.

6.2 Write Disturbance in NVRAM

Under unexpected power-loss, explicit cacheline flush can
corrupt memory addresses other than what is being up-
dated. We call this Write Disturbance in NVRAM . Write
disturbance denotes the situation where a memory update
operation dismantles the contents of the neighboring mem-
ory locations. Write disturbance is widely observed in Flash
memory [49]. When we use explicit cache flush with barrier
synchronization for ordering guarantee, memory is updated
in cache line unit. In the other four methods in Table 3,
the words that are not updated are masked off and only
the updated words are written to memory. The cacheline
update consists of a number of memory IOs whose sizes are
governed by the memory bus bandwidth. The cacheline can
be distributed across multiple banks [48]. It is not possible
in practice that all words that form a cache line are updated
precisely at the same time. A sudden power failure may
corrupt any words in the cache line in a non-deterministic
manner. This bears rather important implications in imple-
menting nvramdisk. When synchronizing the mapping table
entry by clflush, power loss can corrupt a word that is
not being updated but belong to the same cache lines as the
word being updated.

6.3 Type-Dependent Ordering Guarantee

The objects in different regions which correspond map-
ping table, journal, and data blocks, bear different access
characteristics. Data region is read and written in 4KByte
units. Mapping table is frequently read and written in 8
Byte (word) granularity. Journal entry is write-only and is
updated in 8 Byte (word) granularity. We propose to use
different ordering guarantee scheme in Table 3 for different
region.

Let us examine the overhead of two ordering guarantee
schemes MNT and MCF in Table 3 in detail. Let us start
with MNT . For each 8 Byte word, we need one movntq
and one mfence to synchronization. However, for 4 KByte

block write, we do not need to put barrier for every
store instruction. This is because we do not need ordering
guarantee among the store instructions for the same data
block. For 4 KByte write, we need 512 movntq’s but only
only one barrier mfence. MCF yields different result. For
8 Byte word, we need one movq, clflush, and mfench
for synchronization. For a 4KByte block, 512 mov’s and 64
clflush. As in the case of using non-temporal instruction,
MNT , we need one barrier in writing block.

x86 movq mfence
clflushInst. / movntq / sfence

CPI Min 0.33 / 1 6 / 5 90
Max 3 / 300 33 / 9 240

TABLE 4: Cycles Per Instruction in Intel x86 Processors [50]

Each of movq, movntq, clflush and, mfence instruc-
tion has difference latency and throughput. Based on the
minimum and maximum CPI for each of these instruc-
tions (Table 4) [50], we can compute the minimum and max-
imum ordering guarantee overhead for 8 Byte and 4 KByte
writes under MCF and MNT policies. Table 4 summarizes
the result.

For block writes, MNT exhibits better best case per-
formance than MCF does. Meanwhile, MCF yields the
better worst case performance than MNT does. Writing 4
KByte most likely yields the best case performance since the
consecutive movntq or clflush instructions can exploit
parallelism. For word writes, the latencies are expected to
be close to the worst case latency because each instruction
is executed once. According to this calculation, MCF and
MNT may be the right ordering guarantee schemes for word
updates and for block update, respectively. This observation
clearly suggests the need for type-dependent ordering guaran-
tee which applies different ordering guarantee schemes to
individual objects in the nvramdisk subject to their access
characteristics.

ARM architecture does not support non-temporal in-
structions. Current ARM port of nvramdisk (Samsung
Galaxy S3 and S4) adopts the cache flush and memory
barrier scheme for ordering guarantee in all regions of
nvramdisk.

7 EVALUATION

7.1 Experiment Setup
Our performance study consists of three subjects: (i) per-
formance of different ordering guarantee schemes, (ii) IO
performance and (iii) , application performance. We com-
pared the IO performance of nvramdisk against three SSDs

Write Unit 4 KByte 8 Byte
Ordering Method MCF MNT MCF MNT

No.
of

Inst.

movq 512 0 1 0
movntq 0 512 0 1
clflush 64 0 1 0
mfence 1 1 1 1

Cycle Best 5.9k 518 96 7
Worst 16.9k 153.6k 276 333

TABLE 5: Expected Overhead of MCF and MNT policies for
Word and Block Writes

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2428708, IEEE Transactions on Computers

SUBMITTED FOR PUBLICATION, IEEE TRANSACTIONS ON COMPUTERS 8

(Samsung 840PRO, OCZ RevoDrive3, and FusionIO io-
Drive2), and two memory based block devices (ramdisk
and PMBD [16]). To measure the application performance,
we used memcachedb (server) and SQLite (Smartphone).

For our study, we port nvramdisk driver on PC (Linux
Kernel 2.6.36 64-bit), Galaxy S3 (Samsung, Android 4.0 Ice
Cream Sandwich with Linux Kernel 3.0.31), and Galaxy
S4 (Samsung, Android 4.3 Jelly Bean with Linux Kernel
3.4.5). The server has Intel core i5-760 (2.8 GHz) with
12GB DDR3 DRAM (1,333 MHz). We allocated 10 GByte
of DRAM to nvramdisk and formatted the nvramdisk with
ext2 filesystem.

7.2 Type-Dependent Ordering Guarantee

 0

 50

 100

 150

 200

 250

read write read/write

L
a
te

n
c
y
(n

s
)

async

MCF

MNT

MWT

MWC

MUC

(a) 8 Byte Access

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

read write read/write

L
a
te

n
c
y
(u

s
)

async

MCF

MNT

MWT

MWC

MUC

(b) 4 KByte Access

Fig. 7: Access Latency for Ordering Guarantee Methods
(async: without ordering guarantee, MNT :non-temporal,
MWC :write-combining, MCF :cache flush, MWT :write-
through, and MUC :uncachable)

In this experiment, we first examined the performance
of ordering guarantee in raw memory access and then
based on the observation obtained, we examined the per-
formance of ordering guarantee in block device access. We
examined the latencies of read (load), write (store) and
read/write (load/store) operations, under five ordering
guarantee methods. We used two IO sizes: 8Byte (word)
and 4KByte (block). 4KByte read/write consists of mul-
tiple load/store instructions. The read/write workload
consists of 50% read and 50% write. We used mfence for
memory barrier. Fig. 7 illustrates the result. For 8 Byte
access, write-through, MWT , yields the best performance in
all three workloads (Fig. 7a). Accesses to mapping table is
a mixture of read and write operations and therefore write-
through, MWT would be the optimal method. Accesses to
journal are mostly write-only. For journal updates, both
write-through, MWT , and uncachable, MUC yield the best

Write Programming Methods
Policy Data Block Mapping Table Journal
P1 MNT MWT MUC

P2 MNT MWT MWT

P3 MNT MWT MNT

P4 MNT MNT MNT

P5 MWT MWT MWT

P6 MCF MCF MCF

TABLE 6: Type-dependent ordering policies (NT:non-
temporal, WT:write-through, UC:uncachable)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

4 16 64 256

B
a

n
d

w
id

th
(G

B
/s

)

Record Size(KB)

P1 P2 P3 P4 P5 P6

Fig. 8: Performance of Type-dependent Ordering Guarantee
Schemes, P5: write-through only, P6: cache flush only

performance. For 4 KByte accesses, non-temporal command
with barrier, MNT , yields the best result (Fig. 7b).

With this observation, we developed four type-
dependent ordering guarantee schemes for nvramdisk and
applied different schemes to data block, mapping table, and
journal updates (Table 6).

We examined the performance of 4KByte random write
(Direct IO) with IOZone [51]. EXT2 is used. Fig. 8 illustrates
the results. From the raw memory write test, we have
made interim conclusion that MUC/MWT and MWT are
the optimal ordering guarantee methods for journal and
mapping table, respectively. When nvramdisk is loaded
with the filesystem, the performance result does not pre-
cisely coincide with the result we have obtained from raw
memory access experiment. In random write performance,
P3 in Table 6 yields the best performance (Fig. 8). In P3,
data blocks and mapping table used MNT and MWT , re-
spectively, for ordering guarantee. These match the result
we have obtained from raw memory write performance
test. According to our raw memory write test, MUC and
MWT were the best options for journal updates (Fig. 7a).
However, MNT exhibits the best performance in random
write operations.

In summary, for data block, mapping table, and jour-
nal region, use of non-temporal command (MNT), write-
through (MWT), and use of non-temporal command (MNT),
yielded the best performance, respectively. In subsequent
experiment, this combination of ordering guarantee scheme
is used.

7.3 Random Write
The overhead of nvramdisk is caused by ordering guaran-
tee, mapping table updates and mapping table journaling,

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2428708, IEEE Transactions on Computers

SUBMITTED FOR PUBLICATION, IEEE TRANSACTIONS ON COMPUTERS 9

 0

 100

 200

 300

 400

 500

 600

read write

1
,0

0
0
 I
O

P
S

SSD
PCIe SSD1
PCIe SSD2

RAMDISK
PMBD

NVRAMDISK

(a) 4K Random IOPS

 0

 50

 100

 150

 200

read write

L
a
te

n
c
y
(u

s
)

SSD
PCIe SSD1
PCIe SSD2

RAMDISK
PMBD

NVRAMDISK

(b) Latency

Fig. 9: nvramdisk and Fast Block Devices

 0

 1

 2

 3

 4

 5

 6

 7

4 16 64 256

B
a
n
d
w

id
th

 (
G

B
/s

)

Record Size(KB)

RAMDISK
NVRAMDISK-async

NVRAMDISK-sync

Fig. 10: nvramdisk vs ramdisk random write bandwidth
(NVRAMDISK-sync: NVRAMDISK with ordering guaran-
tee, NVRAMDISK-async: NVRAMDISK without ordering
guarantee)

which only happen with write operations.
We dedicate our efforts to examining the random write

performance of nvramdisk. We compared the performance
of nvramdisk with three SSD’s, 840PRO (SATA3, Samsung),
Revo Drive3 (PCIe, OCZ), and ioDrive2 (PCIe, FusionIO)
and two memory based block devices, PMBD [16] and
ramdisk. We generated 4 KByte random writes on these
devices and measured IOPS and latency, using iometer [52].
We set the ordering guarantee options of PMBD as non-
temporal store, write barrier, and write-back cache options
which are similar to the one used by nvramdisk

nvramdisk exhibits ×2.5 random IO performance im-
provement compared to the fastest SSD (FusionIO ioDrive2).
nvramdisk exhibits 27% higher IOPS than PMBD. In IOPS
and IO latency of 4 KByte random write, nvramdisk is on a
par with ramdisk.

We examined the overhead of ordering guarantee in
nvramdisk. We measured the random write performance
of nvramdisk and ramdisk varying the record sizes from
4 KByte to 256 KByte. We measured the nvramdisk
performance with and without ordering guarantee fea-
ture to physically examine its performance overhead. The
nvramdisk without the ordering guarantee feature is labeled
NVRAMDISK-async.

nvramdisk and ramdisk exhibit identical performance
in small IO (4KB). However, the performance difference
becomes more significant as the IO size increases. For 256KB
IO, nvramdisk exhibits 37% lower performance against
ramdisk (Fig. 10).

In small IO, the overhead of ordering guarantee is not
visible. Removing the ordering guarantee does not bring

 0

 5

 10

 15

 20

insert delete update

O
p

s
/s

e
c
 (

x
1
0

3
)

IoDrive2
RAMDISK

PMBD
NVRAMDISK

Fig. 11: memcachedb Performance: insertion, deletion, and
update

any visible performance gain. However, when IO size is
large, e.g., 64 KByte, the ordering guarantee overhead be-
comes significant. When ordering guarantee is removed,
the performance of nvramdisk becomes on a par with
the performance of ramdisk. With ordering guarantee, the
performance of nvramdisk decreases by 32%. Given that
the dominant use of ramdisk is to harbor database table
for structured and unstructured data, small random write
performance will be the most important measure of the
effectiveness of nvramdisk. Based on our observation in this
experiment, we do not expect a transactional block device to
incur any significant performance overhead compared to its
ramdisk counterpart. The next two sections are dedicated to
studying the performance of nvramdisk in real applications.

7.4 Application 1: memcachedb
Memcachedb is distributed key-value store which usually
uses fast storage device, e.g., an SSD, to maintain its data
persistently [53]. Memcachedb uses Berkeley DB [54] as its
key-value engine. We examined the performance of mem-
cachedb operation under four block devices: nvramdisk,
PMBD, ramdisk and ioDrive2. We included ramdisk in this
experiment to examine the overhead of supporting the
transaction property in nvramdisk. The size of key and
value are 16 byte and 512 byte, respectively. We configured
memcachedb in transactional mode with 64MB cache. Both
the memcachedb server and the client were on the same
machine to mitigate the network overhead.

Fig. 11 shows the performance of insertion, deletion, and
update for ioDrive2, ramdisk, and nvramdisk. nvramdisk
exhibits up to 89% and 26% performance gain against
ioDrive2 and PMBD, respectively. nvramdisk exhibits as
much as 6% lower performance than ramdisk. We carefully
argue that 6% overhead to provide transaction property is
justifiable.

In Fig. 10, we have observed that the performance of
nvramdisk can decrease by as low as 37% against ramdisk’s
performance for large IO, e.g., 128KByte. Memcachedb ex-
periment shows that nvramdisk is very unlikely to expe-
rience this overhead in the real settings since IO size is
normally less than a few page.

7.5 Application 2: SQLite
SQLite [55] is serverless DBMS which is widely used to
maintain small sets of records especially in mobile plat-

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2428708, IEEE Transactions on Computers

SUBMITTED FOR PUBLICATION, IEEE TRANSACTIONS ON COMPUTERS 10

 0

 500

 1000

 1500

 2000

D T P W W’ D T P W W’

in
s
e
rt

/s
e
c
o
n
d

Galaxy S3 Galaxy S4

Fig. 12: SQLite performance in Smartphone (D: delete, T:
truncated, P: persist, W: wal, M: memory, O: off, W’: wal on
nvramdisk)

Fig. 13: SQLite Performance in PC (D: delete, T: truncated,
P: persist, W: wal, M: memory, O: off)

forms, e.g. Android, iOS, Mozilla, Tizen as well as PC,
e.g. web browser. A number of efforts have recently been
proposed to reduce the SQLite driven IO traffic [33], [56],
[57]. SQLite maintains separate roll-back journal file for
crash recovery. This roll-back journal file resides at eMMC,
the NAND Flash device for mobile devices. We improve
the SQLite performance by locating the roll-back journal
file at nvramdisk. We modified the SQLite to locate the
rollback journal file (or WAL file) on the nvramdisk. We port
nvramdisk driver to two smartphones. Galaxy S3 (Android
4.0, Linux 3.0.31) and Galaxy S4 (Android 4.3, Linux 3.4.5).

We examined the performance of SQLite under different
journal modes. Fig. 12 illustrates the result of the experi-
ment in Smarphone platforms. For WAL mode, which is
the default journal mode in recent Android OS, SQLite
performance (insert operation) increases by ×2.9 from 743
ins/sec to 2184 ins/sec (Galaxy S4) and ×2.6 from 235 to
611 (Galaxy S3), respectively. The SQLite performance gain
in PC is even starker. Via locating WAL file in nvramdisk,
SQLite performance increases by x15(Fig. 13). Compared
with ramdisk, the nvramdisk imposes only about 1% of
insertions/sec performance for WAL mode.

We examine the block accesses to identify the source of
improvement. In WAL mode, the updated database page is
appended to WAL file. When the number of outstanding
pages exceeds a certain threshold or when the application
closes, the page entries in the WAL file are checkpointed
to the database. If WAL file resides at nvramdisk, most
of the write will go to nvramdisk which is orders of
magnitude faster than Flash device. Fig. 14 shows the block

(a) WAL on SSD (b) WAL on nvramdisk

Fig. 14: Block trace for insert operations, checkpoint inter-
val=1000 page, SSD: Intel X25M

 0

 0.2

 0.4

 0.6

 0.8

 1

1 1.2 1.4 1.6 1.8 2.0

N
o
rm

a
liz

e
d
 i
n
s
/s

e
c
 p

e
rf

o
rm

a
n
c
e

Normalized Memory Latency

memcachedb
SQLite

Fig. 15: Normalized Application performance under varying
NVRAM latencies, SQLite: Galaxy S4, memcachedb: Core-i5

traces for performing a sequence of insert operations when
WAL resides at the SSD and at nvramdisk, respectively (PC
platform). In Fig. 14a and Fig. 14b, the time to checkpoint
the WAL entries to the SQLite database is almost identical
since the checkpoints are performed on DB file in the SSD.
However, the time for inserting a page entry to WAL file
dramatically decreases when locating a WAL file to an
nvramdisk instead of an SSD. When WAL resides at the
SSD, the interval between the successive checkpoint is 663
msec(Fig. 14a). When WAL file resides at nvramdisk, the
interval between the successive checkpoint reduces to 35
msec (14b), resulting in ×15 performance improvement.

7.6 Effect of NVRAM Latency

There exists a variety of different NVRAM technologies, e.g.
STT-MRAM, PC-RAM, FRAM and, RE-RAM [58]. Each of
these devices has different access latencies; write latency of
PCRAM can be as much as x10 slower than DRAM whereas
write latency of STT-MRAM can be as fast as DRAM.
The access latency also varies subject to the scale of the
manufacturing process. We examined the effect of NVRAM
latency on the application performance. We measured the
performance of memcachedb and SQLite while varying
latencies of NVRAM device. We used busy loop to introduce
delay in PMBD [16]. We vary the NVRAM device latency
from 1.0 to 2.0 compared to the DRAM latency. 1.0 and 2.0
means that the latency of NVRAM is the same as DRAM
and twice longer than DRAM, respectively.

Fig. 15 illustrates the application performance normal-
ized against the case when the latencies of NVRAM and

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2428708, IEEE Transactions on Computers

SUBMITTED FOR PUBLICATION, IEEE TRANSACTIONS ON COMPUTERS 11

 0

 1

 2

 3

 4

 5

4 16 64 256 1024

B
a
n
d
w

id
th

(G
B

/s
)

Record Size(KB)

Dynamic Allocation
Fixed Allocation (Shadow Block)

Fig. 16: Block Allocation Overhead: Static vs. Dynamic
BLock Allocation

DRAM are the same. Both of these applications are IO inten-
sive. As expected, the performance proportionally decreases
with the NVRAM latency. The performance of SQLite is
more sensitive to NVRAM latency than the performance
of memcachedb. Memcachedb performance decreases to
45% when the latency of NVRAM becomes twice as large
as that of DRAM. In Galaxy S4, the SQLite performance
decreases to 50% when NVRAM latency is twice larger than
DRAM latency. If NVRAM latency is three times larger than
DRAM’s, there is no performance gain in locating the WAL
file in nvramdisk.

7.7 Static vs. Dynamic Allocation of Shadow Block
Finally, we examine the effectiveness of our static pre-
allocation scheme of shadow block. In nvramdisk, we over-
provision a fixed number of pages to accommodate incom-
ing write instead of relying on page allocator provided
by Linux kernel. This is to avoid the various overheads
of Kernel page allocator including buddy algorithm. We
compared the performance of static pre-allocation scheme
and allocator of Linux Kernel. We issued “write()” re-
quest (O DIRECT) to nvramdisk with varying IO sizes (4,
16, 64, 256, and 1024 KB) and examined the performance
under two different shadow block allocation schemes. The
fixed pre-allocation scheme exhibits as high as 25% better
performance than kernel page allocator. Fig. 16 illustrates
the result.

8 CONCLUSION

In this work, we developed nvramdisk, a transactional block
device driver for NVRAM, which consists of three key
technical ingredients: shadow block, mapping table jour-
naling, and type-dependent ordering guarantee. With these
features, write operations on nvramdisk are guaranteed to
be atomic. The most salient feature of nvramdisk is its
backward compatibility. It is just a very fast block device
with DRAM-like latency and persistency. Application do
not require any modifications to work on top of it. With
nvramdisk, performances of Memcachedb and SQLite in-
crease by ×1.9 and by ×2.9, respectively. In particular, the
performance improvement obtained by locating the SQLite
WAL file on nvramdisk is significant since it effectively
relieves the burden of heavy fsync(). Despite its non

trivial mechanism of supporting transaction property, the
overhead of nvramdisk is insignificant in real situations.
The transactional capability comes with as much as 6% per-
formance degradation in key-value store operation (mem-
cachedb) against legacy ramdisk. nvramdisk opens up a
new opportunity for modern applications to exploit the
salient nature of NVRAM in an extremely versatile manner.

ACKNOWLEDGMENTS

This work is supported in part by IT R&D program
MKE/KEIT (No. 10041608, Embedded System Software for
New-memory based Smart Device). The authors would
like to give special thanks to Myungsik Kim for his help,
support, and expert opinions.

REFERENCES

[1] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Campbell,
“Consistent and durable data structures for non-volatile byte-
addressable memory,” in Proceedings of the USENIX Conference on
File and Stroage Technologies, ser. FAST’11, San Jose, CA, USA, 2011.

[2] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta,
R. Jhala, and S. Swanson, “NV-Heaps: Making persistent objects
fast and safe with next-generation, non-volatile memories,” in
Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS’11,
Newport Beach, CA, USA, 2011.

[3] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight
persistent memory,” in Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS’11, Newport Beach, CA, USA, 2011.

[4] J. Guerra, L. Mármol, D. Campello, C. Crespo, R. Rangaswami,
and J. Wei, “Software persistent memory,” in Proceedings of the 2012
USENIX Conference on Annual Technical Conference, ser. USENIX
ATC’12, Boston, MA, USA, 2012.

[5] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger,
and D. Coetzee, “Better I/O through byte-addressable, persistent
memory,” in Proceedings of the Symposium on Operating Systems
Principles, ser. SOSP ’09, Big Sky, MT, USA, 2009.

[6] X. Wu and A. L. N. Reddy, “SCMFS: A file system for storage
class memory,” in Proceedings of International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
’11, Seattle, WA, USA, 2011.

[7] K. Zhang, L. Wang, A. Pan, and B. B. Zhu, “Smart caching for web
browsers,” in Proceedings of the International Conference on World
Wide Web, ser. WWW’10, Raleigh, NC, USA, 2010.

[8] Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh, H. Woo, B. G.
Lindsay, and J. F. Naughton, “Middle-tier database caching for
e-business,” in Proceedings of the International Conference on Man-
agement of Data, ser. SIGMOD ’02, Madison, WI, USA, 2002.

[9] A. Proctor, “NV-DIMM: Fastest tier in your storage strategy,”
http://www.vikingtechnology.com/.

[10] “Memory channel storage,”
http://www.diablo-technologies.com/products/mcs.html.

[11] A. Badam and V. S. Pai, “SSDAlloc: Hybrid SSD/RAM memory
management made easy,” in Proceedings of the Conference on Net-
worked Systems Design and Implementation, ser. NSDI’11, Boston,
MA, USA, 2011.

[12] G. C. Hunt and J. R. Larus, “Singularity: Rethinking the software
stack,” SIGOPS Oper. Syst. Rev., vol. 41, no. 2, Apr. 2007.

[13] R. Wheeler, “”persistent memory and linux: New storage tech-
nologies and interfaces”,” San Franscisco, CA, USA, 2013, collab-
oration Summit, The Linux Foundation.

[14] A. Rudoff, “Programming models o enable persistent memory,”
Storage Developer Conference, SNIA, Santa Clara, CA, USA, 2012.

[15] M. Nielsen, “How to use a ramdisk for linux,” 1999.
[16] F. Chen, “Intel persistent memory block driver,”

https://github.com/linux-pmbd/pmbd.
[17] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy ef-

ficient main memory using phase change memory technology,” in
Proceedings of the 36th Annual International Symposium on Computer
Architecture, ser. ISCA ’09. New York, NY, USA: ACM, 2009, pp.
14–23.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2428708, IEEE Transactions on Computers

SUBMITTED FOR PUBLICATION, IEEE TRANSACTIONS ON COMPUTERS 12

[18] J. Yun, S. Lee, and S. Yoo, “Bloom filter-based dynamic wear
leveling for phase-change ram,” in Proceedings of the Conference on
Design, Automation and Test in Europe. EDA Consortium, 2012, pp.
1513–1518.

[19] R. Maddah, S. Cho, and R. Melhem, “Power of one bit: Increasing
error correction capability with data inversion,” in Dependable
Computing (PRDC), 2013 IEEE 19th Pacific Rim International Sym-
posium on. IEEE, 2013, pp. 216–225.

[20] M. K. McKusick, M. J. Karels, and K. Bostic, “A pageable memory
based filesystem,” in Proceedings of the Summer 1990 Usenix Techni-
cal Conference, 1990.

[21] P. Snyder, “tmpfs: A virtual memory file system,” in In Proceedings
of the Autumn 1990 European UNIX Users Group Conference, 1990,
pp. 241–248.

[22] “Protected and persistent ram filesystem,”
http://pramfs.sourceforge.net/.

[23] J. Jung, Y. Won, E. Kim, H. Shin, and B. Jeon, “Frash: Exploiting
storage class memory in hybrid file system for hierarchical stor-
age,” Trans. Storage, vol. 6, no. 1, pp. 3:1–3:25, Apr. 2010.

[24] Y. Park, S.-H. Lim, C. Lee, and K. H. Park, “Pffs: A scalable flash
memory file system for the hybrid architecture of phase-change
ram and nand flash,” in Proceedings of the 2008 ACM Symposium
on Applied Computing, ser. SAC ’08. New York, NY, USA: ACM,
2008, pp. 1498–1503.

[25] I. H. Doh, J. Choi, D. Lee, and S. H. Noh, “Exploiting non-volatile
ram to enhance flash file system performance,” in Proceedings of the
7th ACM &Amp; IEEE International Conference on Embedded Software,
ser. EMSOFT ’07. New York, NY, USA: ACM, 2007, pp. 164–173.

[26] E. Lee, H. Bahn, and S. H. Noh, “Unioning of the buffer cache and
journaling layers with non-volatile memory.” in FAST, 2013, pp.
73–80.

[27] J. Kim, C. Min, and Y. I. Eom, “Reducing excessive journaling
overhead in mobile devices with small-sized nvram,” in Consumer
Electronics (ICCE), 2014 IEEE International Conference on, Jan 2014,
pp. 19–20.

[28] D. Narayanan and O. Hodson, “Whole-system persistence,” in
Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS’12,
London, England, UK, 2012.

[29] A. M. Caulfield, A. De, J. Coburn, T. I. Mollow, R. K. Gupta,
and S. Swanson, “Moneta: A high-performance storage array
architecture for next-generation, non-volatile memories,” in Pro-
ceedings of the Annual International Symposium on Microarchitecture,
ser. MICRO ’43, Washington, DC, USA, 2010.

[30] K. Bailey, L. Ceze, S. D. Gribble, and H. M. Levy, “Operating
system implications of fast, cheap, non-volatile memory,” in Pro-
ceedings of the Conference on Hot Topics in Operating Systems, ser.
HotOS’13, Napa, CA, USA, 2011.

[31] K. Bhandari, D. R. Chakrabarti, and H.-J. Boehm, “Implications of
cpu caching on byte-addressable non-volatile memory program-
ming,” HP Laboratories, Tech. Rep. HPL-2012-236, 2012.

[32] P. M. Chen, W. T. Ng, S. Chandra, C. Aycock, G. Rajamani,
and D. Lowell, “The Rio file cache: Surviving operating system
crashes,” in Proceedings of International Conference on Architectural
Support for Programming Languages and Operating Systems, ser.
ASPLOS’96, Cambridge, MA, USA, 1996.

[33] S. Jeong, K. Lee, S. Lee, S. Son, and Y. Won, “I/O stack optimiza-
tion for smartphones,” in Proceedings of the Conference on USENIX
Annual Technical Conference, ser. USENIX ATC’13, San Jose, CA,
USA, 2013.

[34] “Innodb storage engine.” http://innodb.com.
[35] X. Ouyang, D. Nellans, R. Wipfel, D. Flynn, and D. K. Panda,

“Beyond block I/O: Rethinking traditional storage primitives,”
in 2011 IEEE 17th International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 2011, pp. 301–311.

[36] Intel 64 and IA-32 Architectures Software Developer’s Manual Volume
3B: System Programming Guide, Intel Corporation, 2013.

[37] P. von Begren, “SNIA NVM programming model,” 2013.
[38] G. Dhiman, R. Ayoub, and T. Rosing, “PDRAM: A hybrid PRAM

and DRAM main memory system,” in Proceedings of the Annual
Design Automation Conference, ser. DAC ’09, San Francisco, CA,
USA, 2009.

[39] J. C. Mogul, E. Argollo, M. Shah, and P. Faraboschi, “Operating
system support for NVM+DRAM hybrid main memory,” in Pro-
ceedings of the Conference on Hot Topics in Operating Systems, ser.
HotOS’09, Monte Verit, Switzerland, 2009.

[40] J. Yang, D. B. Minturn, and F. Hady, “When poll is better than
interrupt,” in Proceedings of the Conference on File and Storage
Technologies, ser. FAST’12, San Jose, CA, USA, 2012.

[41] M. Wei, M. Bjørling, P. Bonnet, and S. Swanson, “I/o speculation
for the microsecond era,” in Proceedings of the 2014 USENIX confer-
ence on USENIX Annual Technical Conference. USENIX Association,
2014, pp. 475–482.

[42] J. Gim, T. Hwang, Y. Won, and K. Kant, “Smartcon: Smart context
switching for fast block devices,” ACM Transactions on Storage
(forthcoming), 2015.

[43] M. I. Seltzer, G. R. Ganger, M. K. McKusick, K. A. Smith, C. A. N.
Soules, and C. A. Stein, “Journaling versus soft updates: Asyn-
chronous meta-data protection in file systems,” in Proceedings of
the Annual Conference on USENIX Annual Technical Conference, ser.
ATEC ’00, San Diego, CA, USA, 2000.

[44] C. A. N. Soules, G. R. Goodson, J. D. Strunk, and G. R. Ganger,
“Metadata efficiency in versioning file systems,” in Proceedings of
the Conference on File and Storage Technologies, ser. FAST ’03, San
Francisco, CA, USA, 2003.

[45] T. Ylönen, “Shadow paging is feasible,” Ph.D. dissertation,
Helsinki University of Technology, Department of Computer Sci-
ence, 1994.

[46] D. Hitz, M. Malcolm, J. Lau, B. Rakitzis et al., “Copy on write
file system consistency and block usage,” May 2005, uS Patent
6892211.

[47] A.-I. A. Wang, G. Kuenning, P. Reiher, and G. Popek, “The con-
quest file system: Better performance through a disk/persistent-
RAM hybrid design,” Trans. Storage, vol. 2, no. 3, Aug. 2006.

[48] H. Park, S. Baek, J. Choi, D. Lee, and S. H. Noh, “Regularities
considered harmful: Forcing randomness to memory accesses to
reduce row buffer conflicts for multi-core, multi-bank systems,”
in Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS’13,
Houston, TX, USA, 2013.

[49] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi,
P. H. Siegel, and J. K. Wolf, “Characterizing flash memory: Anoma-
lies, observations, and applications,” in Proceedings of the Annual
International Symposium on Microarchitecture, ser. MICRO 42, New
York, NY, USA, 2009.

[50] A. Fog, “Instruction tables: Lists of instruction latencies, through-
puts and micro-operation breakdowns for intel, amd and via
cpus,” Copenhagen University College of Engineering, 2012.

[51] W. Norcott and D. Capps, “Iozone filesystem benchmark,”
http://www.iozone.org, 2003.

[52] D. D. Levine, “Iometer user’s guide,” 1998.
[53] S. Chu, “Memcachedb,” http://memcachedb.org/.
[54] M. A. Olson, K. Bostic, and M. Seltzer, “Berkeley db,” in Pro-

ceedings of the Annual Conference on USENIX Annual Technical
Conference, ser. ATEC ’99, Monterey, CA, USA, 1999.

[55] “SQLite Homepage,” http://www.sqlite.org/.
[56] W.-H. Kim, B. Nam, D. Park, and Y. Won, “Resolving journaling of

journal anomaly in android i/o: Multi-version b-tree with lazy
split,” in Proceedings of the 12th USENIX Conference on File and
Storage Technologies (FAST 14). Santa Clara, CA: USENIX, 2014,
pp. 273–285.

[57] K. Shen, S. Park, and M. Zhu, “Journaling of journal is (almost)
free,” in Proceedings of the 12th USENIX Conference on File and
Storage Technologies (FAST 14). Santa Clara, CA: USENIX, 2014.

[58] R. F. Freitas and W. W. Wilcke, “Storage class memory: The next
storage system technology,” IBM Journal of Research and Develop-
ment, vol. 52, no. 4/5, pp. 439–447, 2008.

Jaemin Jung received the BS and MS degrees
in electrical and computer engineering from the
Hanyang University, in 2007 and 2009, respec-
tively. He is currently working toward the PhD
degree in the Department of Computer and Soft-
ware, Hanyang University, Seoul, Korea. His re-
search interests include operating systems, file
and storage subsystems, and byte-addressable
persistent memory.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TC.2015.2428708, IEEE Transactions on Computers

SUBMITTED FOR PUBLICATION, IEEE TRANSACTIONS ON COMPUTERS 13

Youjip Won received the BS and MS degrees
in computer science from the Seoul National
University, in 1990 and 1992, respectively. He
received the PhD degree in computer science
from the University of Minnesota, Minneapolis,
in 1997. After receiving the PhD degree, he
joined Intel as a server performance analyst.
Since 1999, he has been with the Department
of Computer and Software, Hanyang University,
Seoul, Korea, as a professor. His research inter-
ests include operating systems, file and storage

subsystems, multimedia networking, and network traffic modeling and
analysis.

