To perform experiments for real recorded signals, we used speech,
car noise, or music as the noises. Another set of speech was used as the
signal 5. Korean sentences were recorded for the speech, and the car
noise and music were obtained in NOISEX-92 CD-ROMs and a Korean
popular song, respectively. Fach signal was 10s long with 16 kHz
sampling rate. It is known that speech signal approximately follows a
Laplacian distribution. Therefore, sign(:) was used as the score fune-
tion. Fig. | shows the filter /t;> which was measured in a normal office
room, and the number of taps of adaptive filter cocflicients was 1024.
Table 2 shows the SNRs of the two algorithms for the three different
noises after convergence. The SNRs of the 1CA-based approach were
superior to those of the LMS algorithm. These results show that the
ICA-based approach can remove dependent components through
higher-order statistics for real recorded signals as well.
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Fig. 1 Measured filter in normal office room

Table 2: SNRs of output signals for real recorded signals after
convergence (dB)

. ICA-based
Signal Noise Initial SNRs | LMS algorithm approach
Speech | Car -3.0 21.0 26.8
Speech Speech —3.0 215 387
Speech | Music =30 21.7 41.8

Conclusion: A method for adaptive noise cancelling based on ICA is
proposed and the ICA-based learning rule has been derived. The
method is compared with the LMS algorithm through experiments for
several noise signals and mixing filters. By including higher-order
statistics, the proposed ICA-based approach gives better perfor-
mances than the conventional LMS$ algorithm.
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Classification of power disturbances using
feature extraction in time-frequency plane

LY. Lee, Y.J. Won, J.-M. Jeong and S.W. Nam

An efficient feature extraction in the time-frequency plane is proposed
for automatic classification of power disturbances. For that purpose,
singular value decomposition and principal compenent analysis are
utilised. Finally, the performance of the proposed approach is tested
using a maximum likelihood predictor classifier.

Introduction: Power quality (PQ) has been of great concern recently,
due to the increase inm the number of loads sensitive to power
disturbances, whereby a power disturbance éorresponds to any devia-
tion from the nominal value of the input AC power characteristics
[1-5]. One of the main issues in PQ problems includes how to localise
each disturbance event and recognise its respective type in the
disturbance group more efficiently. Since power disturbances
are finite energy transient or non-stationary signals, it may not be
sufficient to analyse them in the time-domain or in the frequency-
domain alone. To solve such problems, several signal processing
approaches (e.g. [4, 5]) have been reported for the detection and/or
classification of power system disturbances, whereby they may not
provide good performance in a noisy environment. In this Letter, a new
feature extraction approach, based on the joint time-frequency signal
representation [6, 7], is proposed for automatic classification of power
disturbances, where ihe time-frequency structure of each disturbance
signal is cxploited as its distinguishing feature for the recognition of
the respective types of power disturbances. Being the two-dimensional
representation of a one-dimensional signal, the time-frequency signal
representation encodes in a redundant fashion the information of the
one-dimensional signal [7]. Thus, for the effective use of joint time-
frequency signal representations, it is of practical importance to apply
a data compression procedure to the time-frequency representations. In
this Letter, the discrete Wigner distribution (WD) is utilised as a
bilinear {or quadratic) time-frequency representation, and etfective
data compression is accomplished by employing (i) singular vatue
decomposition (SVD) of the discrete WD [7] and (ii) principal
component analysis (PCA) [4]. This results in an efficient feature
vectar extraction for the classification of power system disturbances. In
general, the tasks to be performed for the automatic classification of
power disturbances include the following: (i) capturing each distur-
bance event (i.e. detection) and (ii) sorting the captured disturbance
into various power disturbance groups and identifying its type in the
disturbance group (i.e. recognition) [4, 5]. For the automatic detection
of each power disturbance event, the stop-and-go cell-average
constant-false-alarm-rate (CA-CFAR) detector [3] is emploved in
this Letter. Then, along with the power level of each detected
disturbance, the WD of each detected disturbance, its SVD, and
PCA are utilised for efficient feature vector extraction. Finally, 10-
class disturbance data, generated using the power system blockset [4],
are tested to demonstrate the performance and applicability of the
proposed approach, whereby a maximum likeiihood predictor (MLP)
neural network [8] is employed as a classifier. Also, simulation results
obtained by applying the discrete wavelet transform (DWT)-based
approach [4] are also provided for purpose of comparison.

Detection of power disturbances: In this Letter, the stop-and-go CA-
CFAR detector [3], which is a modified version of the CA-CFAR
detector for the use of power disturbance detection, is utilised to
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localise each transient power disturbance in additive noise. For
example, consider 2 measured power system signal as in Fig. la,
where an impulse waveshape fault waveform is included, and the power
system signal is represented with the roaximum magnitude of the pure
60 Hz sinusoidal signal part being set to one (i.e. normalised). Then,
application of the stop-and-go CA-CFAR detector yields Fig. 15

Feature extraction using SVD and PCA: Once each power distur-
bance waveform is detected, it is necessary to extract, from
the detected disturbance waveform, properly chosen discriminant
information (called a feature vector) for the efficient disturbance
classification. In this Letter, a new featurc extraction approach,
based on the joint time-frequency signal representation [6, 7],
is presented. In particular, among bilinear joint time-frequency
representations, the WD, which is optimal in many respects [6, 7],
is utilised. When x(n) is an N-point signal, its discrete WD, P, is an
N x N matrix the (n, m)th element of which is given by

W.(n, m) = 2Re( Lil x(n + Epet(n — &) exp(ﬂTTk))
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Fig. 1 Feature extraction using WD and SVD

a Measured power system signal

b Detected imputse waveshape fault
¢ Wigner distribution of (£)

d U, V7 obtained from SVD of (¢)
e U;V; obtained from SVD of (¢)

In (1), (n, M) {0,..., N—1}% However, since the discrete WD
includes redundancy due to its two-dimensional representation of a one-
dimensional signal, an effective data compression procedure is required,
which can be effectively accomplished by means of (i) SVD of W, and
(ii) PCA. More specifically, the SVD of W, results in the following
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optimum outer product expansion [7]:

N
W, =Y su T o)

i=1

where U; and V; are the N x 1 vectors corresponding to a singular value
5 (i=1,2,..., N). For example, in case of the impulse waveshape fault
disturbance as in Fig. 15, its WD, U, Vi, and U,VZ are presented in
Figs. le—e, respectively. Also, in the spectrum of singular values, most
energy of each power disturbance is distributed to several major
singutar values (e.g. s1, 52 for power disturbances). From this point of
view, U and ¥, vectors, corresponding to s, and U; and F> vectors,
corresponding to s,, are chosen, along with the power level { of an
A-point disturbance signal, to constitute a potential feature vector F of
dimension 4N+ 1:

F=[ul, vl vl vi” 3)

In addition, so as to eliminate the redundancy among the elements of
(3), Fisher’ criterion, which is one of the PCA techniques, is applied to
(3) for further data compression, where the degree of distinction of one
class from other classes is utilised as the threshold for the appropriate
number of feature elements [4].

Classification using MLP classifier: Each extracted feature vector is
applied as the input to an MLP, which is one of well-recognised neural
network classifiers, to recognise the corresponding class type of it.

Simulations: For the performance test of the proposed approach,
1000 power signal data in additive Gaussian noise (i.e. with 10
classes and 100 data per class; with 40dB SNR; each data is
128-point long) are generated using the power systermn blockset of
Matlab. Also, an MLP with one hidden layer and 10 output neurons
is utilised as a classifier, and 30 data per class (i.e. total: 300 data)
are used for training, while 70 data per class (i.e. total: 700 data)
are applied for test. Under this condition, the exiracted feature,
obtained by analysing 300 training data (i.e. 30 data per class), is of
2 34 x 1 vector form, where the threshold in the Fisher’s criterion is
set to 17.0. In this case, the data compression ratio is equal to 15:1
{(i.e. reduction from 513 to 34). The simulation results (i.e. classi-
fication rates), obtained by applying both the DWT-based approach
[4] and the proposed WD-based approach to the 700 test data, are
presented in Table 1, where the proposed WD-based approach yields
better performance (i.e. 98.0%) than the DWT-based approach
(i.e. 93.4%).

Table 1: Simulation results

Method | DWT-based | WVD-based |

Classes approach approach
1 Voltage sag 70,70 70/70
2 Voltage swell 62/70 70/70
3 Qutage 56/70 70770
4 Capacitor energising 69/70 70/70
5 Impulse waveshape fault 63/70 64/70
6 Notching 66/70 70/70
7 Harmonic distortion 66/70 66/70
8 Flat 10p 70/70 70/70
9 UPS 70/70 70/70
10 | Phase controlled waveshape 62/70 66/70

Total 93.4% 98.0%

s/t = ratio of s (correctly classificd number of data) to # (number of test data)

Conclusion: For the automatic classification of transient or non-
stationary power disturbances, WD is utilised as a joint time-
frequency representation, and SVD and PCA are employed for
effective data compression. The simulation results, obtained using
an MLP classifier, demonstrate that the systematic approach results in
an efficient featwre extraction {e.g. 15:1 compression ratio), also
leading to good classification performance.
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High-speed division architecture for GF2™)
Chang Hoon Kim and Chun Pyo Hong

A new division architecture for GF{2™) with standard basis represen-
tation is presented. The proposed architecture is based on a modified
version of the binary extended greatest common divisor algotithm; it
reduces computational delay time and hardware complexity.

Introduction; The implementation of an elliptic curve public key
cryplosystem requires division in GF(2”). Although the division
operation can easily be implemented using software, it would be
too slow for time-critical applications. Thus many approaches and
architectures have been proposed to realise it using hardware {1-3].
Fermat’s theorem or Euclid’s greatest common divisor (GCD) algo-
rithm or the solution of a set of linear equations can be used to
compute division in GF(2™). Recent research results show Euclid’s
GCD algorithm is the best choice to compute division using hardware
[1-3]. As a result of our research, described in this Letter, we propose
a high-speed and low-complexity division architecture for GF(2™)
with standard basis representation (SBR). This architecture is based
on a modified version of the binary method [4] that is 2 different
representation of Euclid’s GCD algorithm.

New algorithm for division in GF(2™): Let A(x) and B(x) be two
elements in GF(2™), G(x) be the primitive polynomial used o
generate the field and P(x) be the result of the division [A{x})/B(x)
MOD G(x)]. For each polynomial, the coefficients are binary digits 0
and 1:

AX) =y 7 F @t axtay

Bx) = by " + b px™ o brrt by

GE) =x" 4 g ¥ g, ¥ gt 5

PE) =Py P it

(n

In ‘previous research [4], the division result P(x) is obtained using the
binary extended GCD algorithm. The algorithm is described as follows:

Input: G(x), A(x), B(x)

Output: ¥ has P(x)=A(x)/B(x) MOD G(x)
Initialise; R=B(x), S=G=G(x), U=A(x), ¥ =0;

1 while R#0 do

2 while ry = =0 then

3 R=R/x, U=U/x MOD G;

4 while 5o== =0 do

5 S=8/x,V=V/xMOD G,

6 end while

7 if > R then

3 S, R=R+S R, (K U)=W+K U
9 else
10 (S, R)=(S, R+8), (X )= (¥ U+ W),
11 end if

12  end while
This algorithm is based on five simple facts described in {2--6):

If both § and R are even, then GCD(S, R) = xGCD(S/x, R/x) 2)
If § is odd and R is even, then GCD(S, R) = GCD(S, R/x) 3
GCD(S, R) = GCD(R, § — R) 4
GCD(S, R) = GCD(S, S — R) (5)
If both $ and R are odd, then § — R is even 6)

In (6), since subtraction and addition are bit-wise exclusive-OR {XOR)
operation in GF(2™), (7) is satisfied:

S§—R=R-8§=5+R N

Although the algorithm described above is simple, it is difficult to
realise with hardware since the number of iterations is not fixed. In
addition, it requires process of comparisons relative to & and §. We
solve such problems without affecting basic functions of the binary
extended GCD algorithm. The resulting algorithm is described as
follows:

Input: Gix), Alx), B(x)

OQutput: ¥ has P(x) = A(x)/B(x) MOD G(x}

Initialise: R=B(x), S=G=G(x), U=A(x), ¥=0;
count =0, state =0,

1 fori=11t02mdo
2 if sfate = = () then
3 count =count + 1,
4 if ry= =1 then
5 (R, )=(R+S, R), (U, V)=(U+ K U},
6 state=1;
? end if
8 else
9 count=count — 1,
10 if ry= =1 then
11 (R, H=(R+S, 8), (U, N=(U+F, ¥}
12 end if
13 il count= =0 then
14 state = 0;
15 end if
16 end if
17 R=R/x, U=U/x MOD G;
18 end for

The differences between the two algorithms are summarised as follows:

(i) Tn the first algorithm, since the initial value of § equals to G(x), it is
always odd at first. In addition, depending on the value of R, we apply
two different conditions to get GCD(S, R). If R is even, we apply (3). If -
R is odd, we first compute (S — R), and then apply (4) ot (5). In this
case, the resulting value of S is always odd, and we only need to check
the value of R, whether it is even or odd. Based on this result, steps 4, 5
and & (see first algorithm) can be removed.

{if) In the first of the two algorithms described above, since the degree of §
is m and the degree of R is less than m, if we reduce the degree of R or Sby
one for each iteration step, the algorithm will be terminated after 2m
iterations. In addition, comparison is required as described in step 7 of the
first algorithim, In the new algorithm, instead of comparing the value of R
and 5, we use a different approach. As described in the second algorithm
above, we provide new variables counsand state. The variable countis used
for tracking the difference of degree between Rand §, and the variable state
is used for identifying which one has the larger degree between R and 5.

In the second algorithm, depending on the value of state and R, we apply
four different conditions to get GCD{S, R). First, when the variable szare is
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