
Adaptive Cycle Management in Soft Real-time Disk Retrieval ∗

Youjip Won1 Il-Hoon Shin2 Kern Koh2

1Dept. of Electronics and Computer Engineering 2Computer Science and Engineering Division

Hanyang University Seoul National University
Seoul Korea zip:133-791 Seoul Korea zip:151-742

yjwon@ece.hanyang.ac.kr {jeje|kernkoh}@oslab.snu.ac.kr

Abstract

The objective of this study is to determine the right cycle management policy to service pe-
riodic soft real-time disk retrieval. Cycle based disk scheduling provides an effective way of
exploiting the disk bandwidth and meeting the soft real-time requirements of individual I/O
requests. It is widely used in real-time retrieval of multimedia data blocks. Interestingly, the
issue of cycle management with respect to dynamically changing workloads has not been re-
ceiving proper attention despite its significant engineering implications on the system behavior.
When cycle length remains constant regardless of varying I/O workload intensity, it may cause
under-utilization of disk bandwidth capacity or unnecessarily long service startup latency. In
this work, we present a novel cycle management policy which dynamically adapts to the vary-
ing workload. We develop pre-buffering policy which makes the adaptive cycle management
policy robust against starvation. The proposed approach elaborately determines the cycle length
and the respective buffer size for pre-buffering. Performance study reveals a number of valuable
observations. Adaptive cycle length management with incremental pre-buffering exhibits su-
perior performance to the other cycle management polices in startup latency, jitter and buffer
requirement. It is found that servicing low playback rate contents such as video contents for 3G
cellular network requires rather different treatment in disk subsystem capacity planning and call
admission criteria because relatively significant fraction of I/O latency is taken up by plain disk
overhead.

Keywords: Streaming, I/O Scheduling, Pre-buffering, Cycle Management, Jitter, Soft real-time

1 Introduction

1.1 Motivation

Recent advances in the speed of microprocessors, communication media, and storage technologies

enable the computer to harbor and to transport huge amount of information. Furthermore, advances

∗This work was supported by grant No. R08-2003-000-11104-0 from the Basic Research Program of the Korea Science
and Engineering Foundation and from Statistical Research Center for Complex Systems at Seoul National University.

1



in 3G wireless communication services, home networking, WPAN technology accompanied by

rapid decrease in hardware form factor have opened up a new era of ubiquitous dissemination

and consumption of multimedia contents. Despite all these technical achievements and the initial

success of proto-type services, the realization of streaming service is still challenged by a number

of technical issues. These mainly stem from the fact that most commodity operating systems and

Internet protocols are based upon best effort service paradigm while streaming service mandates

data rate guarantee. This fact practically prohibits the cost effective deployment of streaming

services.

In this work, we examine the retrieval of data blocks from the disk for real-time streaming service.

The subject of multimedia disk scheduling has been rigorously investigated over the past few years.

Most of the efforts have been focused on how to schedule a given set of requests. In practice, the

number of ongoing sessions dynamically changes at the session start, session termination, pause or

due to some other reasons. While the majority of the previous works have dealt with cycle based

disk scheduling policy, how to manage the cycle under dynamically changing workloads has not

been given proper attention despite its significance on system behavior. The length of the cycle

is primarily governed by the aggregate playback bandwidth and the cycle length directly affects

several important system behaviors, e.g. service startup latency, per stream buffer size, etc. I/O

scheduler either can dynamically change the cycle length with respect to workload or can make it

constant. Many of the preceding works including a number of prototype streaming servers[29, 25, 3]

use fixed length cycle policy. A fixed cycle length policy initializes the length of a cycle sufficiently

long and does not change it afterward. The initial cycle length is determined based upon a certain

threshold value of disk utilization. This policy may suffer from unnecessary long latency or disk

under-utilization.

In this work, we propose adaptive cycle management(ACM) policy as a promising way of real-time

multimedia data retrieval. ACM policy dynamically adjusts the cycle length with respect to the

2



changes in aggregate playback rate. This enables us to minimize the session startup latency and per

session buffer consumption. It provides greater flexibility in exploiting the bandwidth capacity of

the disk subsystem. On-line extension of a cycle may entail the temporal insufficiency of data blocks

and may cause jitter to some of the ongoing streams. This is because the amount of data blocks

which have been read from the disk in a cycle is not sufficient to survive the newly extended cycle.

This phenomenon can actually be observed in some commercially available streaming servers. For

the smooth extension of a cycle, ACM policy loads the data blocks ahead of schedule, which is called

pre-buffering. A number of different pre-buffering policies are analyzed and evaluated in this work.

1.2 Related Works

Disk scheduling for real-time multimedia playback can be categorized into two: deadline driven

and cycle based scheduling. In deadline driven scheduling, each disk I/O is accompanied with the

deadline. However, deadline driven scheduling may entail significant head movement overhead.

A number of approaches have been proposed to mitigate this overhead by combining it with SCAN

algorithm, e.g. SCAN-EDF, Priority SCAN, Feasible Deadline SCAN[5, 1, 20, 4]. Minimizing seek

time EDF[12] also mitigates the head movement overhead by sorting requests considering their seek

time costs as well as their deadlines. On the other hand, cycle based scheduling algorithm exploits

the soft real-time nature of multimedia I/O and can more effectively utilize the disk subsystem

capacity[17, 19, 7]. In general operating environment, file system is required to service various types

of workload each of which has different latency constraints, e.g. real-time, soft real-time, best effort,

and etc. A number of algorithms and file system implementations addressed the issue of handling

mixed workloads while maximizing the disk bandwidth utilization[23, 29, 31]. Ghandeharizadeh

et al.[8] and Kamel et al.[13] investigated multimedia object retrieval that reduces the overall jitter

in multi-priority requests.

Neogi et al.[15] proposed to prebuffer the data blocks when a fraction of a cycle is unused. There

3



have been a number of proposals for prefetching the leading portion of the requested video file to

minimize the startup latency[10, 16]. These works are based upon the best effort approach and does

not provide any scheduling nor cycle length allocation for pre-buffering. On the other hand, we

elaborately model the length of cycle and the respective buffer size required to prebuffer the data

blocks and reflect this information in I/O scheduling. Triantafillou et al.[26] proposed to prebuffer

the data into on-disk cache. Using on-disk cache can increase the number of concurrent sessions for

a given buffer size. However, in this approach, the cycle length still needs to be extended with the

arrival of new sessions and the ongoing sessions will suffer from jitter.

While the zoning technique provides effective utilization of the storage capacity, its varying

transfer rate adds another dimension of complexity to the scheduling of data block retrieval. A

number of approaches have been proposed to effectively utilize the variable transfer rate of zoned

disks for multimedia data retrieval. The simplest approach is to use the average transfer rate of multi-

zoned disks[22]. Since this approach is grounded at the stochastic expectation, the actual transfer

rate can go below the required transfer rate in a certain cylinder. To overcome this uncertainty,

Ghandaharizadeh[9] proposed to place the data blocks to each zone in a round-robin fashion.

Meter et al.[14] proposed an analytical model for a multi-zoned disk and performed a physical

experiment of the file system performance in the zoned disk. Tse et al.[27] showed that a multi-

zoned disk exhibits significant improvement in throughput and proposed an optimal partitioning

scheme to achieve the maximum transfer rate. Servicing real-time playback from the disk requires

synchronization buffer. If we fetch the entire file into main memory, we do not need buffer for

synchronization. Won et al.[30] analyzed the trade-offbetween these two and proposed an algorithm

which minimizes total buffer requirement. In this work, we develop elaborate mechanism to manage

the cycle for satisfying soft real-time requirement for multimedia data retrieval while minimizing

service startup latency and buffer size requirement.

The rest of this paper is organized as follows. Section 2 describes the issues in multimedia

4



data retrieval. Section 3 introduces the concept of cycle management and pre-buffering. Section

4 provides rigorous modeling and analysis framework for adaptive cycle management and pre-

buffering. In section 5, we present the results of performance evaluation. Section 6 concludes the

paper.

2 Multimedia Data Retrieval

2.1 Synopsis: Disk Mechanism

A magnetic disk drive consists of one or more rotating platters on a common spindle. Data is

written and is read by magnetic heads, generally one per surface. A track is a concentric circle on

one surface. The collection of tracks at the same distance from the center of the platters constitutes

a cylinder. Three attributes, <cylinder, track, sector>, uniquely identify the location of data blocks.

Time to read (or write) the data blocks from (or to) the disk consists of seek latency (the time needed

to move the disk head to the respective track), rotational latency (the time needed to rotate the

platter so that the target block arrives underneath the disk head), and data transfer time (the time

needed to read/write the data blocks).

Most of the modern disk drives adopt a technique called Zoning. Zoning is a technique adopted

by hard disk manufacturers to increase the capacity of their disks. In a multi-zoned disk, a number

of adjacent cylinders are grouped into a zone and the cylinders in the same zone are formatted

with the same number of sectors. Tracks in the outer zone have more sectors. The objective of this

technique is to exploit the constant linear bit density such that the outer cylinders have a larger

storage capacity than the inner ones. Multi-zoning provides superior storage efficiency. However,

the disk exhibits different transfer rate depending on the position of the disk head. Fig. 1 illustrates

the transfer rates with respect to the cylindrical distance from the outer most cylinder. The unit in

X-axis is 10 MByte. The disk can transfer data at 29 MByte/sec in the outer most track. For the inner

5



0

5

10

15

20

25

30

35

0 100 200 300 400 500 600 700 800 900

T
ra

ns
fe

r 
R

at
e(

M
B

yt
e/

se
c)

Offset from Outermost Cylinder(Unit = 10 MByte)

Data Transfer Rate: IBM DPSS-309130, 7200 RPM, 9 GByte, Ultrawide SCSI

Figure 1: Data Transfer Rate in Zoned Disk: IBM DPSS-309170, 7200RPM, 9 GByte, Interconnection
type=Ultrawide SCSI 160

most track, data transfer rate is approximately 24 MByte/sec.

In this work, we assume that the data blocks are placed using the placement strategy proposed

in Ghandaharizadeh et al.[9]. Under this placement strategy, the number of data blocks retrieved

for a session in a cycle needs to be the integer multiples of the number of zones. Fig. 2 illustrates

the placement of the data blocks in a multi-zoned disk. Our modeling framework effectively

incorporates the transfer rate variability of zoned disk.

2.2 Call Admission Control and I/O Scheduling

There are two main issues in guaranteeing continuity: admission control and I/O Scheduling.

There are a number of different software layers where these functions can be implemented: file

system, middleware, and application layers. Fig. 3 illustrates the software architecture of a real-time

multimedia application. I/O scheduling and call admission control can be performed in one of the

followings: the file system layer, middleware, or application layer(streaming server). When we

implement the admission control and I/O scheduling module within file system layer, file system is

in charge of scheduling the I/O requests and of regulating the I/O traffic. However, the legacy file

6



B1

B4

B7

B10

B13
B16 B19

B22

B2

B5

B8
B11 B14

B17

B20

 B3

B6 B9

B15

B18B21

B25

B31

B34

B46

B26

B29

B32
B35B38

B41

B44

B47 B24

B30 B33

B39

B42B45
B48

B27 B36 B12

B28

B43

B40

B37

B23

Figure 2: Round Robin Block Placement in Zoned Disk

system, e.g. Unix file system and its clones, are designed to provide only best effort I/O service and

these legacy file systems cannot provide I/O rate guarantee to the application. Recently, a number

of file systems[25, 29] addressed this issue. These file systems define new programming interfaces

so that the application can control the admission of service requests and can specify the timing

requirement of the I/O request. The I/O scheduler of these file systems prioritizes the I/O requests to

satisfy the timing constraint of a given I/O request. This approach provides greater flexibility in file

system usage. The second approach is to use middleware in handling call admission control and I/O

scheduling[24]. Middleware takes care of all the I/O requests issued from various applications, e.g.

streaming server, ftp server, text editor, or etc. It guarantees continuity by properly regulating the

various types of incoming service requests. While this approach facilitates the flexible control over

various types of different applications, it does not control the lower level I/O scheduling and thus the

system capacity may not be effectively exploited. When we implement the call admission control

and I/O scheduling module in application layer, streaming server software is the one to embed these

functions in our case. Streaming software is in charge of satisfying the timing requirement of I/O

requests. I/O scheduler of a streaming server should have global knowledge on I/O traffic on the

7



1 τ2 τn

Call Admission Controller

File System

Disk

Clients

Middleware

Streaming Server

τ

Resource
Manager

I/O Scheduler

I/O Scheduler

user 1 user 2 user n

Figure 3: Component Organization of Multimedia Application

given storage subsystem. It practically implies that the given storage subsystem is dedicated for

streaming workload. While this approach is one of the most widely used, it leaves much to be

desired in effectively exploiting the capacity of a given storage subsystem.

�����������������������������
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

Client 2

Client 1

Client 3

Disk

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

Retrieval

Figure 4: Cycle Based Scheduling and Multimedia Data Retrieval

2.3 Cycle Based Disk Scheduling for Multimedia Data Retrieval

For the efficient support of real-time multimedia playback, one of the most important issues is to

schedule a set of soft real-time disk I/O requests to guarantee a certain data rate to the individual

sessions. Deadline driven disk scheduling may suffer from excessive disk head movement espe-

cially under intense workload[2]. Cycle based disk scheduling effectively addresses this problem

8



by exploiting the soft real-time nature of multimedia workload. A cycle is the interval between

successive bursts of read operations. Fig. 4 illustrates the retrieval of data blocks in cycle based disk

scheduling. There are three client sessions. Each of these clients consumes data blocks at a certain

data rate. The server retrieves data blocks in each cycle so that it can supply the data blocks to the

client, conformant to the respective playback rate. There is an important discrepancy between the

playback operation and the disk retrieval operation. Playback of multimedia data is a synchronous

operation e.g. 30 frames/sec, but the operation of retrieving the data blocks from the disk is asyn-

chronous. To compromise this discrepancy, a certain amount of the memory buffer are dedicated

to individual sessions so that the buffer can absorb the interval variation between successive data

block retrievals.

The length of a cycle should be long enough so that the disk can fetch all the required data

blocks. The amount of data blocks read in a cycle should be sufficient for cycle length’s playback.

The continuity guarantee problem is to determine cycle length T and the amount of data blocks to

read from the disk for each session. The first condition is that the amount of data blocks read in a

cycle should be sufficient for a cycle’s playback. This condition can be formulated as in Eq. 1. n, τi,

r j and Z denote the number of sessions, max transfer rate of zone i, playback rate of a session j and

the number of zones, respectively.

T × τi ≤ ni × b (1)

The second condition is that the disk should be able to read these data blocks,
∑n

i=1 ni in less than

or equal to T. I/O latency is dependent upon a number of factors: disk head movement overhead,

the maximum transfer rate of the disk, etc. The location of data block governs the head movement

overhead. In zoned disk, maximum transfer rate varies depending upon the cylindrical position of

disk head. All these factors need to be properly incorporated to obtain I/O schedule. Eq. 2 illustrates

9



this condition.

T ≥

n
∑

i=1

Z
∑

j=1

ni × b

r j × Z
+

n
∑

i=1

Ti
seek +

n
∑

i=1

Ti
lat + Tw seek (2)

Given all these, we can obtain the length of a cycle as in Eq. 3. O(n) denotes the total head movement

overhead to service n streams. Details of this derivation can be found in Appendix A.

T ≥
O(n)

1 −
(
∑n

i=1 τi

Z

∑Z
j=1

1
r j

) (3)

3 Adaptive Cycle Management

3.1 Extending a cycle

In practice, the number of concurrent sessions dynamically changes. It may be due to the start of the

new session, termination of the ongoing service session, temporal suspension of a playback, or some

other reason. As in Eq. 3, the lower bound of the cycle length and the amount of data blocks read in

the respective cycle is a function of the aggregate playback rate,
∑n

i=1 τi. When designing streaming

server software, it is important to choose the appropriate cycle management policy keeping in mind

that workload changes dynamically. The easiest and the most straight forward solution to this

problem is to use a constant length cycle. The length of a cycle needs to be sufficiently large to avoid

disk under-utilization. Let us call this fixed cycle length policy. In the fixed cycle length policy, the

cycle length is set to a certain value, T f ix, and the server retrieves T f ix · τi amount of data blocks

in each cycle for stream i. A request for streaming service is rejected if the cycle length becomes

greater than T f ix as a result of its admission. As an alternative to the fixed cycle length policy, we can

adjust the cycle length with respect to the aggregate playback rate,
∑n

i=1 τi. We call this an adaptive

cycle length policy. This policy still has some drawbacks. Though the adaptive cycle length policy

can minimize the buffer requirement and service startup latency, it cannot seamlessly adapt to the

10



S1 S1 S1 S1S2 S2 S2 S2S3 S3 S3 S4

C3

Data Loading 

Stream 3

t1 : arrival of new request

t3 : commencement of streaming service

t2 : start of extended round

C4 − C3

Jitter

t1

C3 C4

t3

Figure 5: Cycle Extension and jitter

dynamic workload change. Extension of a cycle may entail temporal insufficiency of data blocks and

can subsequently cause jitter to ongoing sessions. Fig. 5 illustrates the occurrence of jitters due to

the cycle extension. Data blocks retrieved in a cycle become available for playback in the next cycle.

The top half of Fig. 5 illustrates that the data block is retrieved from the storage. In the beginning

of these are three streams, s1, s2 and s3. The respective cycle length is denoted by C3. Data blocks

for s1, s2 and s3 are being retrieved in round-robin fashion in each cycle. In practice, the order of

retrieval is subject to the underlying disk scheduling algorithm. The new service request, s4, arrives

at t1. When the new request arrives, the resource allocation and call admission module computes

the new cycle length and buffer size, and determines whether it is possible to service the newly

arriving request. Fig. 5 illustrates that the cycle extension causes jitter to ongoing session. Due to

the arrival of new session, cycle length is extended to accommodate a new session. The new cycle

length, C4, becomes effective from the third cycle. The data blocks loaded in the extended cycle, C4

are available for playback only after t3. However, the data block retrieved in C3 in the upper half of

the graph is played back in C3 in the bottom half of Fig. 5 Since the blocks fetched in the third cycle

11



will be available after t3, S3 suffers from to temporal starvation. S3 experiences jitter for (C4 − C3)

duration.

3.2 Pre-buffering: Seamless Cycle Extension

A session can survive temporal starvation caused by cycle extension if it has accumulated a sufficient

amount of data blocks ahead of schedule. We call the operation of buffering data blocks ahead of

schedule pre-buffering. Fig. 6 illustrates the effect of pre-buffering. X and Y axis denote the time and

the data blocks in memory. ci denotes the cycle length for i streams. As data blocks are accumulated,

the buffer usage increases. As the player consumes the accumulated data block, the buffer usage

decreases. Let n and cn be the number of sessions and the respective cycle length. In this figure, the

session starts at t0. Prior to start service,the application has accumulated when there are n sessions,

the system is in equilibrium state, i.e. consumption and production rates blocks are the same. New

request arrives at t1. As a result, the cycle length is extended to cn+1 and it becomes effective from

t2. During the cycle starting from t2, individual sessions consume the data block loaded in the

previous cycle. Data block read in the previous cycle is for cn’s playback and is not sufficient for

cn+1’s playback. However, we have accumulated a certain amount of data blocks prior to starting

the session. Thus, we can use this data blocks and can survive the cycle extension. The shaded

triangular region in Fig. 6 denotes the data blocks supplied from the prebuffered data blocks.

There are two policies in loading the data ahead of schedule. The first approach is to start

service only after a sufficient amount of data blocks are loaded into the memory. We call this Full

Prebuffering. This approach is illustrated in Fig. 6. Disadvantage of this approach is long startup

latency. The user waits a number of cycles for the service until a sufficient amount of data blocks

becomes available. The second approach is to make the cycle sufficiently large so that the server

can retrieve more data blocks than what is to be consumed in a cycle. As playback proceeds,

the server incrementally accumulates the data blocks which are used to survive cycle extension,

12



 

time

B
uf

fe
r 

S
iz

e/
st

re
am

L: Startup latency

m: prebuffer size

Cn Cn

m

Cn+1

L

new req.

t2t0 t1

Figure 6: Prebuffering

until a sufficient amount of data blocks are preloaded. We call this approach Incremental Prebuffering.

Service can start immediately after request arrival and the user experiences relatively shorter startup

latency. However, incremental pre-buffering can be more vulnerable to jitter since the cycle may get

extended before the server accumulates sufficient amount of data blocks. Section 5 presents an in

depth comparison of these two policies under various operating environments.

4 Modeling and Analysis of Prebuffering Policies

4.1 Full pre-buffering

In Full pre-buffering policy, we have to decide how much to prebuffer. For this purpose, we

use the notion of service limit, ζ, on disk bandwidth utilization. Disk bandwidth utilization is

aggregate bandwidth usage
maximum disk bandwidth

. In zoned disk, this can be formally written as
∑n

i=1 τi
∑Z

j=1
1

Z·r j
. We set up

the system so that the total data rate does not exceed the service limit, ζ.1. The lower bound on cycle

length and the respective buffer size are obtained using Eq. 3. Let Tmax be the cycle length when the

1In practice, streaming service providers are very careful not to overestimate the service limit of disk bandwidth
utilization. This conservative approach usually results in significant underutilization of disk capacity. Typically, the
service limit is set to less than 10%.

13



m : prebuffer size

D
at

a 
in

 B
uf

fe
r

m L : startup latency

i : incremental prebuffering

timeL

L : startup latency

time

i

i

L

D
at

a 
in

 B
uf

fe
r

Figure 7: Full pre-buffering vs. Incremental Prebuffering

variable Meaning

T cycle length

ni number of data blocks read in a cycle for stream i

τi playback rate of stream i

b block size in byte

r j maximum transfer rate of zone j

Z number of zones

Ti
seek

seek time incurred during accessing stream i

Ti
lat

rotational latency for stream i

Tw seek worst case seek

α fraction of cycle used for reading the data blocks for the next cycle

B
j
max buffer size requirement for session j when the disk utilization is at maximum

B
j
n buffer size requirement for session j when there are n sessions.

Tmax cycle length when the disk utilization is at maximum

Ti cycle length when there are i streams

Table 1: Summary of Math Notations

14



disk reaches its service limit. The main idea of full pre-buffering is that the server prebuffers the

data blocks for Tmax’s playback before the start of service. The buffer size for session j, B
j
max can be

represented as in Eq. 4.

B
j
max =

⌈

Tmaxτi

b

⌉

b (4)

We examine the startup latency in full pre-buffering(L in Fig. 6). Full pre-buffering requires that

the B
j
max amount of data blocks are fetched into memory prior to the start of service. Let Tn and B

j
n

be the minimum cycle length and the amount of data blocks retrieved in a cycle for stream j when

there are n concurrent streams. Total buffer size, B̂
j
n is the total amount of buffer allocated to session

j. It is the sum of the size of prebuffered data blocks and the amount of data retrieved in each cycle,

i.e. B̂
j
n = B

j
max+B

j
n. Let us assume that with the arrival of a new request, the cycle length is extended

to Tn. The new stream, say s j, can start only after B
j
max amount of data are fetched into memory. s j

reads B
j
n amount of data blocks in a cycle. L j, the startup latency for session j, can be formulated as

in Eq. 5.

L j =

















B
j
max

B
j
n

















Tn

=

















⌈
Tmaxτn

b
⌉b

1

B
j
n

















Tn (5)

4.2 Incremental pre-buffering

Full buffering may entail non trivial service startup latency. To reduce startup latency, we propose

a policy called Incremental Prebuffering. When the cycle is longer than its minimum requirement, we

can retrieve more data blocks than what is to be consumed during a single cycle. In incremental

pre-buffering, we determine the cycle length so that the application retrieves more data than what

is to be consumed(either displayed or transmitted) in a cycle. The idea of incremental pre-buffering

is to use these surplus data blocks to survive the cycle extension. In incremental pre-buffering, the

15



server does not wait until the Bmax amount of data blocks becomes available in memory. Instead, it

immediately starts playback. It accumulates the data blocks until the Bmax amount of data blocks

becomes available in memory.

The consumption ratio, α (0 < α ≤ 1) is the ratio between data retrieved and consumed in a cycle.

αni denotes the amount of data blocks played in a cycle while ni denotes the amount of data blocks

read in a cycle. In incremental pre-buffering, the length of a cycle and the respective data blocks to

be read in a cycle should be large so that α fraction of the data blocks suffices for a cycle’s playback.

The continuity requirement in incremental pre-buffering can be written as in Eq. 6.

Tτi ≤ αnib (6)

Solving Eq. 6 and Eq. 2, we obtain the number of data blocks read in a cycle, ni, as in Eq. 7. ni is

upper bounded by Bi
max. Details of the derivation can be found in Appendix B.

ni ≥
O(n)τi

α −

(
∑n

1=1 τi

Z

∑Z
j=1

1
r j

)

1

b
and ni ≤ Bi

max (7)

(1 − α)ni data blocks are accumulated for each cycle until the Bi
max amount of data blocks becomes

available in memory. In incremental pre-buffering, a session starts after the single cycle’s data blocks

are fetched into memory. Eq. 8 illustrates the cycle length in incremental pre-buffering.

L = T ≥
O(n)

α −

(
∑n

1=1 τi

Z

∑Z
j=1

1
r j

) (8)

4.3 Array of Disks and Adaptive Cycle Extension

Till now, our modeling effort is based upon the single disk assumption. In practice, it is not

uncommon that the streaming server uses disk array as its storage subsystem. Our modeling on

16



buffer size requirement and cycle extension can easily be extended to the realm of RAID storage via

slight modification. There are a number of ways to place a set of files over these disks. The simplest

approach is localized placement where a file is placed on a single disk. This placement policy can

cause hot-spot problems. By striping the file over all disks, we can evenly distribute the load among

the disks. The striping unit can be a block(coarse grain striping) or a byte(fine grain striping)[6, 18].

Replicating a file is also a resort to increase the access bandwidth for a file[28].

Eq. 9 and Eq. 10 state the minimum cycle length requirement in fine grain striping and coarse

grain striping, respectively. By replacing Eq. 2 with one of these formulas, we can easily derive the

buffer size, cycle length for various pre-buffering policies for disk arrays with coarse grain striping

and fine grain striping, respectively. Let us re-define ni as the number of the data blocks read from

the disk array in a cycle. Let D be the number of disks in the disk array. In fine grain striping[21],

individual disks reads ni

D amount of data and thus Eq. 2 is modified into Eq. 9.

T f gs ≥

n
∑

i=1

Z
∑

j=1

(ni/D) × b

r j × Z
+

n
∑

i=1

Ti
seek +

n
∑

i=1

Ti
lat + Tw seek (9)

The amount of data blocks to be read from the disk in coarse grain striping is the same as in

fine grain striping. However, since the data blocks are striped in a block-wise fashion, data blocks

retrieved from a single disk are for n
D sessions, where n is the number of sessions. Disk head

movement overhead is governed by the number of sessions to serve. Thus, coarse grain striping

entails less disk overhead, i.e. seek and rotational latency. The continuity requirement of coarse

grain striping can be formulated as in Eq. 10.

Tcgs ≥

n
D
∑

i=1

Z
∑

j=1

(ni) × b

r j × Z
+

n
D
∑

i=1

Ti
seek +

n
D
∑

i=1

Ti
lat + Tw seek (10)

Comparing Eq. 9 and Eq. 10, we can observe that disk overhead, i.e. seek time and rotational

17



latency, is smaller in coarse grain striping, which implies shorter cycle length. On the other hand,

startup latency of coarse grain striping can be as long as (D + 1)Tcgs, but the startup latency of fine

grain striping is T f gs. Further detailed analysis of multimedia data retrieval from array of disks

should be dealt with in separate context. The interested readers are referred to[2, 21].

5 Performance Analysis

In this section, we analyze the performance and the effectiveness of the pre-buffering strategy.

We examine jitter, startup latency, and buffer requirement under four different cycle management

policies: (i) fixed cycle length policy where the length of the cycle is set sufficiently large and does not

change with workload, (ii) adaptive cycle length without pre-buffering where cycle length is adjusted

with respect to the aggregate playback bandwidth, (iii) adaptive cycle length with full pre-buffering

and (iv) adaptive cycle length with incremental pre-buffering. We consider three playback rates in our

simulation study: 64 Kbits/sec, 1.5 Mbits/sec and 19.2 Mbits/sec. A playback rate of 64 Kbits/sec is

used to examine the streaming server behavior for a mobile wireless streaming service. A playback

rate of 1.5 Mbits/sec and 19.2 Mbits/sec are used to simulate the server for MPEG-1 and HDTV

(ATSC compressed) streaming services, respectively. Playback length is 100 minutes.

The disk is modeled after the IBM Deskstar 180 GXP with a storage capacity of 180 GByte. The

disk platter is partitioned into 27 zones. The sector size is 512 bytes. The transfer rate of each zone

ranges from 29 MB/s to 56 MB/s. The disk rotates at 7200 RPM and the average and full seek times

are 8.5 msec and 15 msec, respectively. We assume that there are 100 video titles in the server for

64 Kbits/sec and 1.5 Mbits/sec/sec, and 10 video titles for 19.2 Mbits/sec2. 19.2 Mbits/sec is playback

rate for ATSC digital TV[11]. Data blocks in a file are placed in consecutive locations on the disk

platter. We assume CBR playback. In practice, user accesses are concentrated on a small number of

2180 GByte can store about 10 files of 100 minutes in length encoded with 19.2 Mbits/sec

18



”hot” files while the rest of the video titles are rarely accessed. To model this situation, we use Zipf

distribution with a parameter of 0.271. The request arrival process is modeled using the Poisson

process with an average inter-arrival time of 3 sec. The block size is 4 KB and the simulation runs

for 6 simulated hours.

5.1 Jitter

Cycle extension delays timely retrieval of data blocks. From an application’s point of view, this delay

can potentially prohibit the advancement of a scene. As illustrated in Fig. 5, the amount of delay

corresponds to the difference between the lengths of successive cycles before and after extension.

We call this delay frozen period. The effectiveness of a cycle management policy relies on how to

insulate the application from screen freeze phenomenon. The length of total frozen period for a

playback is called the Cumulative Frozen Period (CFP).

Fig. 8(a), 8(b) and Fig. 8(c) illustrate the average length of the Cumulative Frozen Period (CFP).

The X and Y axis denote the service limit and CFP, respectively. Fix, Var, Full PB and Inc correspond to

fixed cycle length, adaptive cycle length, adaptive cycle length with full pre-buffering and adaptive

cycle length with incremental pre-buffering, respectively. In incremental pre-buffering, we assume

that 9% of the cycle is used for prebuffering, where α = 0.91. With 64 Kbits/sec playback rate streams

(Fig. 8(a)), disk utilization rarely goes beyond 55% with a 3 sec average inter-arrival time. We vary

the service limit from 0.05 to 0.55. In all bandwidth utilization settings, Fix, Full PB and INC do

not cause any jitter. However, dynamic extension of a cycle without pre-buffering causes jitter to

individual playback sessions. The total jitter increases up to 20 sec depending on the service limit.

For 1.5 Mbits/sec playback, jitters are found only in the VAR policy(Fig. 8(b)). We observe that

the total length of jitter increases very fast as disk utilization increases. This is because when the disk

bandwidth utilization is low, the respective cycle length is relatively short. Thus, even though cycle

extension occurs, the difference in cycle lengths before and after the cycle extension is relatively

19



0

5

10

15

20

25

0.05 0.15 0.25 0.35 0.45 0.55

C
F

P
 (

se
c)

upper bound of bandwidth utilization

Jitter (64 Kbps)

Fix
Var

Full PB
INC(0.91)

(a) Playback rate = 64 Kbits/sec

0

1

2

3

4

5

6

7

8

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85

C
F

P
 (

se
c)

upper bound of bandwidth utilization

Jitter (1.5 Mbps)

Fix
Var

Full PB
INC(0.91)

(b) Playback rate = 1.5 Mbits/sec

0

0.5

1

1.5

2

2.5

3

0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

C
F

P
 (

se
c)

upper bound of bandwidth utilization

Jitter (19.2 Mbps)

Fix
Var

Full PB
INC(0.91)

(c) Playback rate = 19.2 Mbits/sec

Figure 8: Cumulative Frozen Period under different playback rates. Request arrival is modeled
after Poisson arrival with inter-arrival time, 3 sec. Fix: fixed cycle length, Var: adaptive cycle length,
Full PB: adaptive cycle length with full pre-buffering, Inc: adaptive cycle length with incremental
pre-buffering

20



insignificant. However, as disk bandwidth utilization increases, the cycle length increases rapidly

with respect to the disk bandwidth utilization. Subsequently, the differences in cycle lengths before

and after the cycle extension becomes more significant.

We find an interesting system behavior in this test. Let us examine the total length of frozen

period between the 1.5 Mbits/sec(Fig. 8(b)) and 64Kbits/sec(Fig. 8(a)) playback. Consider 55% disk

bandwidth utilization. When the playback rate is 1.5 Mbits/sec, the user experiences total frozen

period of 1.5 sec during 120 minutes of playback. Meanwhile, the user suffers from total frozen

period of 20 sec when the playback rate is 64 KBits/sec. We observe that the lower rate playbacks are

much more vulnerable to cycle extension. When the playback rates of individual sessions are low,

the disk subsystem can support relatively larger number of streams. This causes larger disk head

movement overhead, i.e. larger O(n) in Eq. 3, and subsequently makes the cycle length significantly

longer. This phenomenon bears an important implication on capacity planning of the streaming

server. When the playback rate is relatively low, as in the mobile wireless streaming service, the

target disk utilization of the storage subsystem should be much lower than the target utilization of

streaming server for the high speed networked environments or for high definition TV service.

The advantage of using pre-buffering becomes more obvious when the playback rate is relatively

low. Let us consider the 19.2 Mbits/sec playback rate. Even when the server is heavily loaded, e.g.

90% disk utilization, the cumulative frozen period for each session is only 1 sec on average with

VAR policy (adaptive change without pre-buffering). In fact, cycle length does not increase beyond

3 sec when the playback rate is 19.2 Mbits/sec. Since the cycle length is much shorter with higher

playback rate, the jitter caused by cycle extension tends to be less severe. This is because with a 19.2

Mbits/sec playback rate, disk bandwidth is saturated with a small number of sessions and thus disk

head movement overhead is relatively low.

We can summarize the findings as follows. When the playback rate is either 1.5 Mbits/sec or 64

Kbits/sec, we significantly reduce the length of cumulative frozen period by pre-buffering the data

21



blocks. Prebuffering the data blocks effectively removes the jitter. The improvement becomes more

significant as the server becomes more heavily loaded. Instead of adaptively extending the cycle,

using sufficiently long cycle is also a way to achieve jitter free playback. Incremental pre-buffering

exhibits almost as good performance as full pre-buffering or the fixed cycle length policy from the

aspect of cumulative frozen period.

5.2 Start-Up Latency

Jitter and startup latency are two important metrics for evaluating the cycle management policy. In

section 5.1, we found that the cycle management policies with pre-buffering produce far superior

jitter behavior than policies without pre-buffering. However, the startup latency overhead of pre-

buffering may offset the advantage of pre-buffering especially in on-demand service environment.

In this section, we examine the startup latency of individual policies. Fig. 9(a), 9(b) and Fig. 9(c)

illustrate the average service startup latency for each playback rate. The X and Y axis denote the

service limit and the elapsed time between the arrival of a request and the start of the actual service,

respectively. The adaptive cycle length policy without pre-buffering(VAR) maintains the cycle length

as short as possible. It results in the shortest startup latency. However, this policy suffers from the

worst jitter behavior as shown in section 5.1. On the other hand, the startup latency seen with an

incremental pre-buffering policy with a consumption factor of 0.91 is almost as good as the startup

latency of the VAR policy at all playback rates.

For 19.2 Mbits/sec playback rate (Fig. 9(c)), startup latency of full pre-buffering ranges from 0 to

5 sec depending on service limit. In incremental pre-buffering policy, startup latency is less than 2

sec. Since the server starts dispatching the data blocks right after the first cycle, the startup latency

in incremental pre-buffering is smaller than the startup latency of the full pre-buffering and fixed

cycle length policies. Full pre-buffering policy and fixed cycle length policy have relatively long

startup latency. In practice, multimedia client application has several seconds’ startup latency which

22



0

20

40

60

80

100

120

140

0.05 0.15 0.25 0.35 0.45 0.55

la
te

nc
y 

(s
ec

)

upper bound of bandwidth utilization

Startup Latency (64 Kbps)

Fix
Var

Full PB
INC(0.91)

(a) Playback rate = 64 Kbits/sec

0

5

10

15

20

25

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85

la
te

nc
y 

(s
ec

)

upper bound of bandwidth utilization

Startup Latency (1.5 Mbps)

Fix
Var

Full PB
INC(0.91)

(b) Playback rate = 1.5 Mbits/sec

0

1

2

3

4

5

6

7

0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

la
te

nc
y 

(s
ec

)

upper bound of bandwidth utilization

Startup Latency (19.2 Mbps)

Fix
Var

Full PB
INC(0.91)

(c) Playback rate = 19.2 Mbits/sec

Figure 9: Startup latency under different playback rates. Request arrival is modeled after Poisson
arrival with inter-arrival time, 3 sec. Fix: fixed cycle length, Var: adaptive cycle length, Full PB:
adaptive cycle length with full pre-buffering, Inc: adaptive cycle length with incremental pre-
buffering 23



is primarily for pre-buffering the streaming data. Thus, startup latency of 19.2 Mbits/sec stream can

be considered to be insignificant. As service limit increases, startup latency rapidly increases in all

cycle management policies. We can significantly improve startup latency by properly adjusting the

service limit of the disk. For example, in the incremental pre-buffering policy with 1.5 Mbits/sec

playback, average startup latency becomes less than 3 sec by making the service limit 60%.

5.3 Buffer Size Requirement

Buffer size is subject to cycle length and pre-buffering policy. Fig. 10(a), 10(b) and 10(c) illustrate

the results of our experiment. The X and Y axis denote the service limit and per stream buffer

requirement, respectively. An adaptive cycle length without pre-buffering exhibits the smallest

buffer size requirement because it keeps the cycle length as short as possible and does not prebuffer

data blocks. When the disk subsystem is utilized to its service limit, the buffer size are approximately

the same in four cycle management policies.

For 1.5 Mbits/sec and 19.2 Mbits/sec playback rates, the simulation results show that the

buffer size requirement is approximately the same for all cycle management policies(Fig. 10(b)

and Fig. 10(c)). With the 19.2 Mbits/sec playback rate, a small number of concurrent sessions can

saturate the server. Since the disk is fully utilized to its service limit in most of the time in this case,

the advantage of adaptive cycle management can be marginal.

It is worth noting that as service limit gets closer to 100%, the per stream buffer size increases

rapidly in all the scheduling policies. For example, a single 1.5 Mbits/sec stream with incremental

pre-buffering requires 2.8 MByte of buffer space when the service limit is 0.85. However, when the

service limit is 0.60, the per session buffer size decreases to 0.8 MByte. We can significantly reduce

the buffer size requirement by carefully controlling the service limit.

24



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.05 0.15 0.25 0.35 0.45 0.55

pe
r 

st
re

am
 b

uf
fe

r 
(M

B
)

upper bound of bandwidth utilization

Buffer Size (64 Kbps)

Fix
Var

Full PB
INC(0.91)

(a) Playback Rate = 64 Kbits/sec

0

0.5

1

1.5

2

2.5

3

3.5

4

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85

pe
r 

st
re

am
 b

uf
fe

r 
(M

B
)

upper bound of bandwidth utilization

Buffer Size (1.5 Mbps)

Fix
Var

Full PB
INC(0.91)

(b) Playback Rate = 1.5 Mbits/sec

0

2

4

6

8

10

12

0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

pe
r 

st
re

am
 b

uf
fe

r 
(M

B
)

upper bound of bandwidth utilization

Buffer Size (19.2 Mbps)

Fix
Var

Full PB
INC(0.91)

(c) Playback Rate = 19.2 Mbits/sec

Figure 10: Buffer Size Requirements under different playback rates. Fix: fixed cycle length, Var:
adaptive cycle length, Full PB: adaptive cycle length with full pre-buffering, Inc: adaptive cycle
length with incremental pre-buffering

25



6 Conclusion

Cycle-based disk scheduling policy has been widely used to retrieve multimedia data blocks for real-

time playback. Determining the length of the cycle for a given workload and setting up the respective

data retrieval schedule have been subjects of rigorous studies in recent years. Interestingly however,

the issue of how to manage the cycle length with respect to dynamically changing workloads has not

been receiving proper attention despite its significant engineering implications. The objective of this

study is to determine the right cycle management policy for periodic soft real-time disk request and

eventually to help software engineers or system developers in designing more efficient streaming

systems.

Cycle management policies can be categorized into two types: fixed cycle length and adaptive

cycle length. Adaptive cycle length policy effectively utilizes buffer memory and minimizes startup

latency. However ongoing streams may get exposed to jitter when the cycle is extended due to

the commencement of new streaming sessions. On the other hand, fixed cycle length policy may

cause long startup latency and buffer overhead. To resolve the temporal insufficiency of data blocks

in adaptive cycle length management policies, we propose a technique called pre-buffering which

is to make a sufficient amount of data blocks available in memory prior to starting service. We

examine two ways of pre-buffering: full pre-buffering and incremental pre-buffering. We develop an

elaborate model to compute the cycle length and the respective buffer size in both full pre-buffering

and incremental pre-buffering.

Through simulation-based experiments, we examine three aspects of the system behavior: the

total jitter, startup latency, and buffer size under different policies: fixed cycle length, adaptive cycle

length with full pre-buffering, adaptive cycle length with incremental pre-buffering and adaptive cycle length

without pre-buffering policies. Prebuffering enabled policies deliver jitter-free playback. Adjusting

the cycle length without pre-buffering causes non-negligible amount of jitter. Full pre-buffering and

26



fixed cycle length policies entail prohibitively long startup latency, e.g. approximately 120 sec in

64 Kbits/sec playback rate streams. Startup latency in the incremental pre-buffering policy is almost

as good as the the cycle management policy which does not prebuffer data blocks. We find that

pre-buffering overhead in incremental pre-buffering is almost negligible, especially under higher

playback rates(1.5 Mbits/sec or higher). We also find that we can significantly reduce startup

latency and the buffer size requirement by properly adjusting the service limit. It is found that

servicing low playback rate contents such as video contents for 3G cellular network requires rather

different treatment in disk subsystem capacity planning and call admission criteria because relatively

significant fraction of I/O latency is taken up by plain disk overhead. Analyzing the results of

our study, we conclude that the adaptive cycle length management with incremental pre-buffering is

the promising way of managing the cycle in soft real-time disk I/O. In this work, we develop

elaborate mechanism to manage the cycle for satisfying soft real-time requirement for multimedia

data retrieval while minimizing service startup latency and buffer size requirement. The result of

our work provides practical guideline for server capacity planning and setting up resource allocation

strategy in providing multimedia streaming service.

References

[1] R K. Abbott and H. Garcia-Molina. Scheduling i/o requests with deadlines: A performance
evaluation. In Proceedings of RTSS, pages 113–124, December 1990.

[2] Antine Mourad. Issues in the design of a storage server for video-on-demand. Multimedia
Systems, 1996(4):70–86, 1996.

[3] W. J. Bolosky, R. P. Fitzgerald, and J. R. Douceur. Distributed schedule management in the tiger
video fileserver. In ACM SIGOPS Operating Systems Review(ACM), volume 31, pages 212–223,
1997.

[4] M J. Carey, R. Jauhari, and M. Linvy. Priority in dbms resource scheduling. In Proc. of VLDB,
pages 397–410, 1989.

[5] S. Chen, J. A. Stankovic, J. F. Kurose, and D. Towsley. Performance evluation of two new disk
scheduling algorithms for real-time systems. Journal of Real-Time Systems, 3:307–336, 1991.

27



[6] D. Gemmell, H. Vin, D. Kandlur, P. Rangan, and L. Rowe. Multimedia Storage Servers: A
Tutorial. COMPUTER, 28(5):40–49, May 1995.

[7] J. Gemmell. Multimedia Network File Servers:Multi-Channel Delay Sensitive Data Retrieval.
In Proceedings of ACM Multimedia Conference, pages 243–250. ACM, Oct. 1993.

[8] S. Ghandeharizadeh, L. Huang, and I. Kamel. A cost driven disk scheduling algorithm for
multimedia object retrieval. IEEE Transactions on Multimedia, 5(2):186–196, 2003.

[9] Ghandeharizadeh, Shahram and Kim, S. and Shahabi, C. Continuous Display of Video Objects
Using Multi-Zoned Disks. Technical report, University of Southern California, 1995.

[10] Sreenivas Gollapudi and Aidong Zhang. Buffer management in multimedia database systems.
In Proceedings of IEEE International Conference on Multimedia Computing and Systems, pages 186–
190, Hiroshima, Japan, June 1996.

[11] http://www.atsc.org. Atsc standard.

[12] Y. Huang and J. Huang. Disk scheduling on multimedia storage servers. IEEE Transactions on
Computers, 53(1):77–82, 2004.

[13] I. Kamel, T. Niranjan, and S. Ghandeharizadeh. A novel deadline driven disk scheduling algo-
rithm for multi-priority multimedia objects. In Proceedings of IEEE Data Engineering Conference,
2000.

[14] R. V. Meter. Observing the effects of multi-zoned disks. In Proc. of Usenix Technical Conference,
San Jose, CA, USA, 1997.

[15] Anindya Neogi, Ashish Raniwala, and Tzi cker Chiueh. Phoenix: A lower-power fault-tolerant
real-time network-attached storage device. In Proceedings of ACM Multimedia Conference, pages
447–456, Orlando, FL, USA, October 1999.

[16] Raymond T. Ng and Jinhai Yang. An analysis of buffer sharing and prefetching techniques
for multimedia systems. Technical Report 20, University of British Columbia, Vancouver, B.C.,
V6T1Z4, Canada, 1994.

[17] B Ozden, A. Biliris, R. Rastogi, and Avi Silberschatz. A Low-Cost Storage Server for Movie on
Demand Databases. In Proc. of VLDB, 1994.

[18] Banu Ozden, Rajeev Rastogi, and Avi Silberschatz. Disk Striping in Video Server Environments.
In Proceedings of the International conference on Multimedia Computing and Systems, Hiroshima,
Japan, May 1996.

[19] P. Rangan, H. Vin, and S. Ramanathan. Designing an on-demand multimedia service. IEEE
Communication Magazine, 30(7):56–65, July 1992.

[20] A. Reddy and J. Wyllie. Disk scheduling in a multimedia i/o system, 1993.

[21] Martin Reisslein, Keit W. Ross, and Subin Shrestha. Striping for Interactive Video:Is it Worth it?
In Proceedings of International Conference on Multimedia Computing and Systems, Florence, Italy,
1999.

[22] Renu Tewari and Richard King and Dilip Kandlur and Daniel M. Dias. Placement of Multimedia
Blocks on Zoned Disks. In Proceedings of SPIE West ’96, 1996.

28



[23] Y. Rompogiannakis, G. Nerjes, P. Muth, M. Paterakis, P. Triantafillou, and G. Weikum. Disk
scheduling for mixed-media workloads in a multimedia server. In Proceedings of ACM Multi-
media Conference, pages 297–302, Bristol, UK, 1998.

[24] Prashant Shenoy, Saif Hasan, Purushottam Kulkarni, and Krithi Ramamritham. Middleware
versus native os support: Architectural considerations for supporting multimedia applications.
In Proceedings of IEEE Real-time Technology and Applications Symposium, San Jose, CA, USA, Sep
2002.

[25] Prashant J. Shenoy and Harrick M. Vin. Cello: Disk scheduling framework for next generation
operating system. In Proceedings of ACM SIGMETRICS, pages 44–55, Madison, WI, USA, 1998.

[26] P. Triantafillou and S. Harizopoulos. Prefetching into smart-disk caches for high performance
media servers. In Proceedings of IEEE International COnference on Multimedia Computing and
Systems, TrianICMCS99.

[27] P.K.C. Tse and C.H.C. Leung. Improving multimedia systems performance using constant-
density recording disks. Multimedia Systems, 8(1):47–56, January 2000.

[28] Y. Wan and D. Du. Video File Allocation over Disk Arrays for Video-On-Demand. In Proceedings
of International Conference for Multimedia Computing and Systems, 1996.

[29] Ravi Wijayaratne and A.L. Narasimha Reddy. System support for providing integrated services
from networked multimedia storage servers. In Proceedings of ACM Multimedia Conference, pages
270 – 279, Ottawa, Canada, November 2001.

[30] Youjip Won and Jaideep Srivastava. ”smdp: Minimizing buffer requirements for continuous
media servers”. ACM Multimedia Systems Journal, 8(2):105–117, March 2000.

[31] Youjip.Won and Y.S.Ryu. Handling sporadic tasks in multimedia file system. In Proceedings of
ACM Multimedia Conference, pages 462–464, Los Angelses, CA, USA, 2000.

A Scheduling Constraints

We formulate the general constraints in disk scheduling for continuous media playback. Let s =

{s1,...,sn} be a set of n streams, and let τi be the playback rate for stream si. ni and b are the number

of disk blocks to be fetched for si in a cycle and the size of a block, respectively. Two conditions

of continuity guarantee can be formally described as in Eq. 11 and Eq. 12. Eq. 11 illustrates the

condition that the number of blocks read in a cycle should be sufficient for playback of length T.

Ti
seek

, Ti
lat

, Tw seek, Z, and r j denotes the average seek time for stream si, rotational latency, worst

case seek time, the number of zones in the disk, and the data transfer rate of zone j, respectively.

29



The first condition is that the amount of data blocks read in a cycle should be sufficient for a

cycle’s playback. This condition can be formulated as in Eq. 11.

T × τi ≤ ni × b (11)

We need to formulate the condition that the time to read the data blocks for all ongoing sessions

for a cycle’s playback should be less than the cycle length itself.

T ≥

n
∑

i=1

Z
∑

j=1

ni × b

r j × Z
+

n
∑

i=1

Ti
seek +

n
∑

i=1

Ti
lat + Tw seek (12)

With Eq. 11 and Eq. 12, we can obtain the length of cycle as in Eq. 13. O(n) in Eq. 13 corresponds

to the total disk head movement overhead, i.e., O(n) =
∑n

i=1 Ti
seek
+
∑n

i=1 Ti
lat
+Tw seek in retrieving the

data blocks for n streams. From the condition T · τi ≤ nib and Eq. 13, we can obtain the number of

data blocks to read in a cycle.

T ≥
O(n)

1 −
(
∑n

i=1 τi

Z

∑Z
j=1

1
r j

) (13)

B Scheduling Constraints with Slack

We formulate the scheduling constraints given that only α fraction of the data blocks read in a cycle

will be used for playback in the next cycle. Then, these constraints can be formulated as in Eq. 14

and Eq. 15.

T × τi ≤ αni × b (14)

T ≥

n
∑

i=1

Z
∑

j=1

ni × b

r j × Z
+

n
∑

i=1

Ti
seek +

n
∑

i=1

Ti
lat + Tw seek (15)

30



Two conditions in Eq. 14 and Eq. 15 can be solved as follows.

αni × b

τi
≥

n
∑

i=1

Z
∑

j=1

ni × b

r j × Z
+

n
∑

i=1

Ti
seek +

n
∑

i=1

Ti
lat + Tw seek

αni × b

τi
≥

n
∑

i=1

Z
∑

j=1

ni × b

r j × Z
+O(n)

nτ−1 × b ≥ bnI−1
Z
∑

j=1

1

r j × Z
+O(n)

nτ−1 × b − bnI−1
Z
∑

j=1

1

r j × Z
≥ O(n)

bn

















τ−1 − I−1
Z
∑

j=1

1

r j × Z

















≥ O(n)

bn ≥
O(n)

(

τ−1 − I−1
∑Z

j=1
1

r j×Z

)

n ≥
O(n)τ

b
(

α − τI−1
∑Z

j=1
1

r j×Z

)

n ≥
O(n)τ

b
(

α − τI−1
∑Z

j=1
1

r j×Z

)

The amount of data blocks read for session i can be computed as in Eq. 16.

ni ≥
O(n)τi

b
(

α − τI−1
∑Z

j=1
1

r j×Z

) (16)

Finally, the cycle length with slack can be computed as in Eq. 17.

T ≥
O(n)

1 −
(
∑n

i=1 τi·

Z

∑Z
j=1

1
r j

) (17)

31


