
This paper is included in the Proceedings of the 
12th USENIX Conference on File and Storage Technologies (FAST ’14).

February 17–20, 2014 • Santa Clara, CA USA

ISBN 978-1-931971-08-9

Open access to the Proceedings of the 
12th USENIX Conference on File and Storage 

Technologies (FAST ’14) 
is sponsored by

Resolving Journaling of Journal Anomaly in 
Android I/O: Multi-Version B-tree with Lazy Split
Wook-Hee Kim and Beomseok Nam, Ulsan National Institute of Science and Technology; 

Dongil Park and Youjip Won, Hanyang University

https://www.usenix.org/conference/fast14/technical-sessions/presentation/kim-wook-hee



USENIX Association  12th USENIX Conference on File and Storage Technologies 273

Resolving Journaling of Journal Anomaly in Android I/O:

Multi-Version B-tree with Lazy Split

Wook-Hee Kim†, Beomseok Nam†, Dongil Park‡, Youjip Won‡

† Ulsan National Institute of Science and Technology, Korea

{okie90,bsnam}@unist.ac.kr
‡ Hanyang University, Korea

{idoitlpg,yjwon}@hanyang.ac.kr

Abstract
Misaligned interaction between SQLite and EXT4 of

the Android I/O stack yields excessive random writes. In

this work, we developed multi-version B-tree with lazy

split (LS-MVBT) to effectively address the Journaling of

Journal anomaly in Android I/O. LS-MVBT is carefully

crafted to minimize the write traffic caused by fsync()

call of SQLite. The contribution of LS-MVBT consists

of two key elements: (i) Multi-version B-tree effectively

reduces “the number of fsync() calls” via weaving the

crash recovery information within the database itself in-

stead of maintaining a separate file, and (ii) it signif-

icantly reduces “the number of dirty pages to be syn-

chronized in a single fsync() call” via optimizing the

multi-version B-tree for Android I/O. The optimization

of multi-version B-tree consists of three elements: lazy

split, metadata embedding, and disabling sibling redistri-

bution. We implemented LS-MVBT in Samsung Galaxy

S4 with Android 4.3 Jelly Bean. The results are im-

pressive. For SQLite, the LS-MVBT exhibits 70% (704

insertions/sec vs. 416 insertions/sec), and 1,220% per-

formance improvement against WAL mode and TRUN-

CATE mode (704 insertions/sec vs. 55 insertions/sec),

respectively.

1 Introduction

In the era of mobile computing, smartphones and smart

devices generate more network traffic than PCs [1]. It has

been reported that 80% of the smartphones sold in the

third quarter of 2013 are Android smartphones [2]. De-

spite the rapid proliferation of Android smartphones, the

I/O stack of Android platform leaves much to be desired

as it fails to fully leverage the maximum performance

from hardware resources. Kim et al. [3] reported that

in an Android device, storage I/O performance indeed

has significant impact on the overall system performance

although it has been believed that the slow storage per-

formance should be masked due to even slower network

subsystem. The poor storage performance mainly comes

from the discrepancies in interaction between SQLite

and EXT4.

SQLite is a serverless database engine that is used ex-

tensively in Android applications to persistently manage

the data. SQLite maintains crash recovery information

for a transaction in a separate file which is log for write-

ahead logging (or rollback journal). In an SQLite trans-

action, every update in the log or rollback journal and ac-

tual updates in the database table are separately commit-

ted to the storage device via fsync() calls. In TRUN-

CATE1 mode, a single insert operation of 100 byte record

entails 2 fsync() calls and eventually generates 9 write

operations (36 KB) to the storage device. 100 byte of

database insert amplifies to over 36 KB when it reaches

the storage device[4]. The main cause of this unexpected

behavior is that EXT4 filesystem journals the journaling

activity of SQLite through heavy-weight fsync() calls.

This is called the Journaling of Journal anomaly [4].

There are several ways to resolve the Journaling of

Journal anomaly. One way is to tune the I/O stack in OS

layer, such as eliminating unnecessary metadata flushes

and storing journal blocks on a separate block device [5].

Another way is to integrate the recovery information into

the database file itself so that the database can be re-

stored without an external journal file. Multi-Version B-

Tree (MVBT) proposed by Becker et al. [6] is an exam-

ple of the latter. The excessive I/O operations also cause

other problems such as shortening the lifetime of NAND

eMMC since NAND flash cells can only be erased or

written to a limited number of times before they fail.

In this work, we dedicate our efforts on resolving

the Journaling of Journal anomaly from which the An-

droid I/O stack suffers. Journaling of Journal anomaly

is caused by two reasons: the number of fsync() calls

in an SQLite transaction and the overhead of a single

fsync() call in EXT4. In order to reduce the number

1one of the journal modes in SQLite
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of fsync() calls as well as the overhead of a single

fsync() call, we developed a variant of Multi-version

B-tree, LS-MVBT (Lazy Split Multi-Version B-Tree). The

contributions of this work are summarized as follows.

• LS-MVBT We resolve the Journaling of Jour-

nal anomaly with multi-version B-tree that weaves

transaction recovery information into the database

file itself instead of using separate rollback journal

file or WAL log file.

• Lazy split LS-MVBT reduces the number of dirty

pages flushed to the storage device when a B-tree

node overflows. Our proposed lazy split algorithm

minimizes the number of modified B-tree nodes by

combining a historical dead node with one of its

new split nodes.

• Buffer reservation LS-MVBT further reduces the

chances of dirtying an extra node by padding some

buffer space in lazy split nodes. If a lazy split node

is accessed again and additional data items need to

be stored, they are stored in reserved buffer space

instead of splitting it.

• Metadata embedding LS-MVBT reduces the I/O

traffic by not flushing the database header page to

the storage device. Instead, our proposed metadata

embedding method moves the file change counter

metadata from database header page into the last

modified B-tree node which should be flushed any-

way.

• Disabling sibling redistribution Sibling redis-

tribution (migration of overflown data into left

and right sibling nodes) has been widely used in

database systems, but we show that it significantly

increases the number of dirty nodes. LS-MVBT

prevents sibling redistribution to improve write per-

formance at the cost of slightly slowing search per-

formance.

• Lazy garbage collection Version-based data struc-

tures require garbage collection for dead entries.

LS-MVBT reclaims dead entries of a B-tree node

only when the node needs to be modified by a cur-

rent write transaction. This lazy garbage collection

does not increase the amount of data to be flushed,

since it only cleans up dirty nodes.

We implemented LS-MVBT in one of the most recent

smartphone models, Galaxy-S4. Our extensive experi-

mental study shows that LS-MVBT exhibits 70% perfor-

mance improvement against WAL mode and 1,220% im-

provement against TRUNCATE mode in SQLite transac-

tions. WAL mode may suffer from long recovery latency

for replaying the log. LS-MVBT outperforms WAL

mode not only in terms of transaction performance, e.g.,

insertion/sec, but also in terms of recovery time. Our

experiment shows recovery time in LS-MVBT is up to

440% faster than that in WAL mode.

The rest of the paper is organized as follows: In sec-

tion 2, we discuss other research efforts related to the

Android I/O stack and database recovery modes includ-

ing multi-version B-trees. In section 3, we present how

multi-version B-tree (MVBT) resolves the Journaling of

Journal anomaly. In section 4, we present our design of a

variant of MVBT, LS-MVBT (Lazy Split Multi-Version

B-tree). In section 5, we propose further optimizations

including metadata embedding, disabling sibling redis-

tribution, and lazy garbage collection that reduce the

number of dirty pages. Section 6 provides the perfor-

mance results and analysis. In section 7, we conclude

the paper.

2 Related Work

SQLite is a key component in the Android I/O stack

which allows the applications to manage their data in a

persistent manner [7]. In Android based smartphones,

contrary to common perception, the major performance

bottleneck is shown to be the storage device rather than

the air-link [3], and the journaling activity is shown to

be the dominant source of storage traffic [3, 4]. Lee

et al. showed Android applications generate excessive

amount of EXT4 journal I/O’s, most of which are caused

by SQLite [5]. The excessive I/O traffic is found to be

caused by the misaligned interaction between the SQLite

and EXT4 [4]. Jeong et al. improved the Android

I/O stack by employing a set of optimizations, which

include fdatasync() instead of fsync(), F2FS, ex-

ternal journaling, polling-based I/O, and WAL mode in

SQLite instead of other journal modes. With these opti-

mization methods, Jeong et. al achieved 300% improve-

ment in SQLite performance without any hardware assis-

tance [4].

Database recovery has been implemented in many dif-

ferent ways. While log-based recovery methods such

as ARIES [8] are commonly used in many other server-

based database management systems, rollback journal is

used as the default atomic commit and rollback method

in SQLite although WAL (Write-Ahead Logging) has be-

come available since SQLite 3.7 [7].

In addition to the rollback journal and log-based re-

covery methods, many version-based atomic commit and

rollback methods have been studied in the past. Version-

based recovery methods integrate the recovery informa-

tion into the database itself so that the database can be

restored without an external journal file [6, 9, 10, 11].

Some examples include the write-once balanced tree

2
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(WOBT) for indelible storage [9], version-based hash-

ing method for accessing temporal data [12], and the

time-split B+-tree (TSBT) [10] which is implemented in

Microsoft SQL Server. Multi-version B+-tree (MVBT)

proposed by Becker et al. [6] is designed to give a new

unique version for each write operation. The version-

based B-tree is proved to be asymptotically optimal in

a sense that its time and space complexity are the same

as those of the single-version B-tree. Becker’s MVBT

does not support multiple updates within a single transac-

tion, but this drawback was overcome by Transactional

MVBT which improved the MVBT by giving the same

timestamp to the data items updated by the same trans-

action [13]. Our LS-MVBT is implemented based on the

Transactional MVBT with several optimizations we pro-

pose in section 4.

The latest non-volatile semiconductor storage, such

as NAND flash memory and STT-MRAM, sheds new

light on the version-based atomic commit and rollback

methods [14, 15]. Venkataraman et al. proposed a B-

tree structure called CDDS (Consistent and Durable Data

Structure) B-tree which is almost identical to MVBT ex-

cept that it focuses on implementing multi-version infor-

mation on non-volatile memory (NVRAM) [15]. For

durability and consistency, CDDS uses a combination

of mfence and clflush instructions to guarantee that

memory writes are atomically flushed to NVRAM.

As write operations on flash memory systems have

high latency, Li et al. developed FD-tree which is opti-

mized for write operations on flash storage devices [16].

As the FD-tree needs a recovery scheme such as jour-

naling or write-ahead-logging, the version-based recov-

ery scheme can also be employed by FD-tree. If so, our

proposed optimizations for multi-version B-tree can be

employed on FD-tree as well.

Current database recovery schemes are based on the

traditional two layers - volatile memory and non-volatile

disks - but the advent of the NVRAM presents new chal-

lenges, i.e., write-ahead logging (WAL) causes some

complications if the memory is non-volatile [17]. WAL

recovery scheme is designed in a way that any update

operation to a B-tree page has to be recorded in a per-

manent write-ahead-log file first while the dirty B-tree

nodes stay in volatile memory. If a database node is

also in permanent NVRAM, the logging is not “write-

ahead”. With NVRAM, the WAL scheme must be re-

designed. An alternative solution is to use version-based

recovery scheme for NVRAM as in CDDS B-tree. Lazy

split, metadata embedding, and other optimizations that

we propose in this work can be used to reduce the num-

ber of write operations even for CDDS B-tree.

3 Multi-Version B-tree

3.1 Journaling of Journal Anomaly in An-

droid I/O

In the Android platform, fsync() call is triggered by the

commit of an SQLite transaction. As the journaling ac-

tivity of SQLite propagates expensive metadata update

operations to the file systems, SQLite spends most of

its insertion (or update) time on fsync() function call

for journal and database files [4]. The issue of resolving

Journaling of Journal anomaly boils down to two techni-

cal ingredients: (i) reducing the number of fsync() calls

in an SQLite transaction and (ii) reducing the number of

dirty pages which need to be synchronized to the storage

in a single fsync() call. Both of these two constituents

eventually aim at reducing the write traffic to the block

device.

In rollback journal modes (DELETE, TRUNCATE,

and PERSIST) of SQLite, a single transaction consists of

two phases: database journaling and the database update.

SQLite calls fsync() at the end of each phase to make

the result of each phase persistent. In EXT4 with ordered

mode journal, fsync() consists of two phases: (i) writ-

ing the updated data blocks to a file and (ii) committing

the updated metadata for the respective file to the journal.

Most database updates in a smartphone, e.g. inserting a

schedule in the calendar, inserting a phone number in the

address book, or writing a note in the Facebook time-

line, are less than a few hundred bytes [5]. As a result,

in the first phase of fsync(), the number of updated file

blocks rarely goes beyond a single block (4 KB). In the

second phase of fsync(), committing a journal transac-

tion to the filesystem journal entails four or more write

operations, including journal descriptor, group descrip-

tor, block bitmap, inode table, and journal commit mark,

to the storage. Each of these entries corresponds to a sin-

gle filesystem block.

In an effort to reduce the number of fsync() calls

in an SQLite transaction, we implemented version-based

B-tree, multi-version B-tree by Becker et al. [6], which

maintains update history within the B-tree itself instead

of maintaining it in a separate rollback journal file (or log

file). This saves SQLite one or more fsync() calls.

3.2 Multi-Version B-Tree

In multi-version B-tree (MVBT), each insert, delete, or

update transaction increases “the most recent consistent

version” in the header page of a B-tree. Each key-

value pair stored in MVBT defines its own life span -

[versionstart ,versionend). When a key-value pair is in-

serted with a new version v, the life span of the new

key-value pair is set to [v,∞). When a key-value pair

3
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Figure 1: Multi-Version B-Tree split: After inserting an

entry with key 25 into MVBT, three new nodes are cre-

ated.

is deleted at version v, its life span is set to - [vold ,v).
Update transaction creates a new cell entry that has the

transaction’s version as its starting version [v,∞) and the

old cell entry updates its valid end version to the previ-

ous consistent version number [vold ,v). The key-value

pair whose versionend of life span is not ∞ is called a

dead entry. The one with infinite life span is called a live

entry. In multi-version B-trees, the search operation is

trivial. A read transaction first examines the latest con-

sistent version number and uses it to find valid entries

in B-tree nodes, i.e., if a version of a read transaction is

not within the life span of a key-value pair, the respective

data is ignored by the read transaction.

If a node overflows, the entries in the overflown node

are distributed into two newly allocated nodes, which is

referred to as “node split”. An additional new node is

then allocated as a parent node or an existing parent node

is updated with the two newly created nodes. The life

spans of the two new nodes are set to [v,∞). An over-

flown node becomes dead via setting the node’s version

range [vold ,∞) to [vold ,v). In summary, a single node

split creates at least four dirty nodes in version-based B-

tree structures. (Please refer to [6] and [15] for more

detailed discussions on the insertion and split algorithms

of version-based B-tree.). In the commit phase of a trans-

action, SQLite writes dirty nodes in the B-tree using the

write() system call and triggers fsync() to make the

result of the write() persistent.

Figure 1 shows how an MVBT splits a node when it

overflows. Suppose a B-tree node can hold at most four

entries in the example. When a new entry with key 25

is inserted by a transaction whose version is 5, the node

P1 splits and a half of the live entries are copied to a

new node, P2, and the other half of the live entries are

copied to another new node, P3. The previous node P1

now becomes a dead node and it becomes available only

for the transactions whose versions are older (smaller)

than 5. The two new nodes should be pointed by a parent

node and the version range of the dead node should also

be updated in the parent node. In the example, a new root

node, P4, is created and the pointers to the three child

nodes are stored.

The recovery in multi-version B-tree is simple and

straightforward. Multi-version B-tree maintains the ver-

sion numbers of currently outstanding transactions at the

storage. In current SQLite, there can be at most one out-

standing write transaction for a given B-tree [7]. In the

recovery phase, the recovery module first reconstructs

the multi-version B-tree in memory from the storage and

determines the version number of aborted transaction.

Then, it scans all the nodes and adjusts the life span of

each cell entry to obliterate the effect of aborted trans-

action. The life span which ends at v, i.e., [vold ,v), is

revoked to [vold ,∞) and all cell entries which start at v

are deleted.

The recent eMMC controllers generate error correc-

tion code for 4 KB or 8 KB page, hence multi-version B-

tree can rely on fsync() to atomically move from one

consistent state to the next in the unit of page size. Even

if the eMMC controller promises that only single sector

writes are atomic and the B-tree node size is a multiple

of the sector size, multi-version B-tree guarantees cor-

rect recovery as it creates a new key-value pair with new

version information instead of overwriting previous key-

value pairs. A multi-version B-tree node can be consid-

ered a combination of B-tree node and journal.

4 Lazy Split Multi-version B-Trees

MVBT successfully reduces the number of fsync()

calls in an SQLite transaction as it eliminates the jour-

naling activity of SQLite. Our next effort is dedicated

to minimizing the overhead of a single fsync() call in

MVBT. The essence of the optimization is to minimize

the number of dirty nodes which are flushed to the disk

as a result of a single SQLite transaction.

4.1 Multi-Version B-Tree Node in SQLite

We modified the B-tree node structure of SQLite and im-

plemented a multi-version B-tree. Figure 2 shows the

layout of an SQLite B-tree node which consists of two

area: (i) cell content area that holds key-value pairs and

(ii) cell pointer array which contains the array of point-

ers (offsets) each of which points to the actual key-value

pair. Cell pointer array is sorted in key order. In the mod-

ified B-tree node structure, each key-value pair defines

its own life span - [versionstart ,versionend), illustrated as

[sv,ev). The augmentation with start and end version

number is universal across all the version-based B-tree

structures [6, 15]. In our MVBT node design, we set

4
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Figure 2: In modified Multi-Version B-Tree node, each

key-value pair is tagged with its valid starting version and

ending version.

Algorithm 1

Lazy Split Algorithm

procedure
LazySplit(n, parent,v)

1: // n is an overflown B-tree node.

2: // parent is the parent node.

3: // v is the version of a current transaction.

4: newNode ← allocateNewBtreeNode()

5: Find the median key value k to split

6: for i ← 0,n.numCells−1 do

7: if k < n.cell[i].key ∧ v ≤ n.cell[i].endVersion then

8: n.cell[i].endVersion ← v

9: newNode.insert(n.cell[i])

10: n.liveCells−−
11: end if

12: end for

13: // Update the parent with the split key and version

14: maxLiveKey ← f indMaxLiveKey(n,v)
15: parent.update(n,maxLiveKey,∞)

16: maxDeadKey ← f indMaxDeadKey(n,v)
17: parent.insert(n,maxDeadKey,v)
18: maxLiveKey2 ← f indMaxLiveKey(newNode,v)
19: parent.insert(newNode,maxLiveKey2,∞)

end procedure

aside a small fraction of bytes in the header of each node

for lazy split and metadata embedding improvement.

4.2 Lazy Split

We develop an alternative split algorithm, Lazy Split,

for MVBT that significantly reduces the number of dirty

pages.

In MVBT, a single node split operation results in at

least four dirty B-tree nodes as shown in Figure 1. The

objective of maintaining a separate dead node in MVBT

is to make garbage collection and recovery simple. On

the other hand, creating a separate dead node yields an

additional dirty page which needs to be flushed to disk.

Unlike in other client/server databases, rollback opera-

 


 
 



 

 
 
 

   

 
 


   

 
 
 
 





Figure 3: LS-MVBT: With the lazy split, an overflown

node creates a single sibling node.

tions do not occur frequently in SQLite, because SQLite

allows only one process at a time to have write permis-

sion to a database file [7], and rollback operations of a

version-based B-tree are already very simple. Therefore,

we argue that benefit of creating a separate dead node

in the legacy split algorithm of MVBT hardly offsets the

additional performance overhead during fsync() that it

induces.

Algorithm 1 shows our lazy split algorithm that post-

pones marking an overflown node as dead, if possible.

Instead of creating an extra dead node, lazy split algo-

rithm combines a dead node with a live sibling node. I.e.,

the lazy node is a half dead node combined with one of

the new split nodes. In the lazy split algorithm, the over-

flown node creates only one new sibling node. Once the

median key value to split is determined, the key-value

pairs whose keys are greater than the median value are

copied to the new sibling node as live entries. In the

overflown node, the end versions of the copied key-value

pairs are changed from ∞ to the current transaction’s ver-

sion in order to mark them as dead entries. In the original

MVBT, the key-value pairs whose keys are smaller than

the median key value are copied to another new left sib-

ling node, but lazy split algorithm does not create the left

sibling node and does not change the end versions of the

smaller half of the key-value pairs.

Figure 3 shows an example of lazy split. When key 25

is inserted into node P1, the greater half of the key-value

pairs (key 12 and key 40) are moved to a new node, P2,

and they are marked dead in P1. Instead of creating an-

other new node and moving the smaller half of the key-

value pairs to it, lazy split algorithm keeps them in the

overflown node. The dead entries in the lazy node will

be garbage collected by the next write transaction that

modifies the lazy node. Note that the lazy node has two

pointers pointing to it in its parent node: one for the dead

entries and the other for the live entries. The same insert

operation in the original MVBT will create a left sibling

5
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Figure 4: A new entry with key 9 is inserted into an over-

flown lazy node but its dead entries can not be deleted be-

cause transaction 5 is the current transaction and it may

abort later. In this case, the reserved space can be used to

hold the new entries and delay the node split again. But

if the same transaction inserts an entry with key 7, the

reserved space of the lazy node also overflows and we

do not have any other option but to create a new left sib-

ling node P4 and move the live entries (5[5,∞), 7[5,∞),

9[5,∞), and 10[5,∞)) to P4.

node, store the key 5 and key 10 in the left sibling node,

and mark the two key-value entries dead in the historic

dead node as shown in Figure 1. In the example, the valid

version ranges of key 5 and key 10 are partitioned in the

two nodes. This redundancy does not help anything es-

pecially when we consider the short lifespan of SQLite

transactions. The dead entries are not needed by any sub-

sequent write transactions and thus can be safely garbage

collected in the next modification of the lazy node be-

cause a write transaction holds an exclusive lock for the

database file. The legacy split algorithm of MVBT cre-

ates four dirty nodes but lazy split decreases the number

of dirty nodes by one, creating only three dirty nodes.

4.3 Reserved Buffer Space for Lazy Split

The lazy node does not have any space left for additional

data items to be inserted after the split. If an inserted key

is greater than the median key value and is stored in a

new node as in Figure 1, the lazy split succeeds. How-

ever, if a new inserted item needs to be stored in the lazy

node, a new sibling node must be created as in the orig-

inal MVBT split algorithm. In order to avoid splitting a

lazy node, we reserve a certain amount of space in a LS-

MVBT node to accommodate the inserted key in the lazy

split node as shown in Figure 4.

To avoid cascade split, the size of the reserved buffer

space should be sufficiently large to accommodate the

Algorithm 2

Rollback Algorithm

procedure
Rollback(n,v)

1: // n is a B-tree node

2: // v is the version of aborted transaction

3: for i ← 0,n.numCells−1 do

4: if n.cell[i].startVersion == v then

5: remove n.cell[i]

6: if n is an internal node then

7: freeNode(n.child[i],v)

8: continue

9: end if

10: deleteEntry(n.child[i])

11: else if n.cell[i].endVersion == v then

12: n.cell[i].endVersion ← ∞
13: if n is an internal node then

14: Delete a median key entry k that was used to split

the lazy node.

15: end if

16: end if

17: Rollback(n.child[i],v)

18: end for

end procedure

newly inserted entries by a transaction. However, reserv-

ing too much space for buffer will make node utiliza-

tion low and may entail more frequent node split creat-

ing larger amount of dirty pages. The size of the reserved

buffer space needs to be carefully determined consider-

ing the workload characteristics. In smartphone appli-

cations, most write transactions do not insert more than

one data item. Therefore, it is unlikely that an overflown

node (lazy node) is accessed multiple times by a single

write transaction.

In order to evaluate the effect of the reserved buffer

space size, we ran experiments varying the sizes of re-

served buffer space. Large reserved buffer space is only

beneficial when a single transaction inserts a large num-

ber of entries into the same B-tree node. However, a large

buffer space did not significantly reduce the number of

dirty nodes in our experiments, but it hurt tree node uti-

lization especially when the B-tree node size was small.

In smartphone applications, it is very common that a

transaction inserts just a single data item, hence we set

the size of the buffer space just large enough to hold only

one key-value item throughout the presented experiments

in this paper. Even if reserved buffer space for one key-

value item is used, a subsequent write transaction that

finds the dead entries in the lazy node will reclaim the

dead entries and create empty spaces.

4.4 Rollback with Lazy Node

6
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Figure 5: Rollback of transaction version 5 deletes node

P2, reverts the end version of dead entries from 5 to ∞,

and merges the entries in the parent node.

The rollback algorithm for the LS-MVBT is intuitive

and simple. More importantly, as in the lazy split algo-

rithm, the number of dirty nodes touched by the rollback

algorithm of LS-MVBT is smaller than that of MVBT.

Algorithm 2 shows the pseudo code of the LS-MVBT

rollback algorithm. When a transaction aborts and rolls

back, the LS-MVBT reverts its B-tree structures back to

their previous states by reverting the end versions of the

lazy nodes back to ∞ and deleting entries whose start ver-

sions are the aborted transaction’s version. In the parent

node, the lazy node has two entries: one for live entries

and the other for dead entries. The parent entry of the

live entries should be deleted from the parent node and

the parent entry for the dead entries should be updated

with its previous end version, ∞, to become active.

Figure 5 shows a rollback example. Note that node

P2 was created by a transaction whose version is 5, thus

P2 should be deleted. Since all the live entries in P2 were

copied from the lazy node P1 by a transaction whose ver-

sion is 5 and P1 has historical entries, P2 can be safely

removed. The dead entries in P1 should be reverted back

to live entries by modifying the end versions. As the lazy

node has two parent entries, the rollback process merges

them and reverts back to the previous status by choos-

ing the larger key value and by merging the valid version

ranges.

5 Optimizing LS-MVBT for Android I/O

5.1 Lazy Garbage Collection

In multi-version B-trees, garbage collection mechanism

is needed as dead entries must be garbage-collected to

create empty spaces and to decrease the size of the trees.

While a periodic garbage collector that sweeps the entire

B-tree is commonly used in version-based B-trees [18,

15], we implemented lazy garbage collection scheme in

SQLite in order to avoid making extra B-tree nodes dirty

and to reduce the overhead of fsync().

When a B-tree node needs to be modified, lazy

garbage collection scheme checks if the node contains

any dead entries whose versions are not needed by an

active transaction. If so, the dead entries can be safely

deleted. The dead entries in a B-tree node will be re-

claimed only when a new live entry is modified or is

added to the node. Since the node will become dirty any-

way by the live entry, our lazy garbage collection does

not increase the number of dirty nodes at all.

5.2 Metadata Embedding

In SQLite, the first page of a database file (header page)

is used to store metadata about the database such as B-

tree node size, list of free pages, file change counter, etc.

The file change counter in header page is used for con-

currency control in SQLite.2 When multiple processes

are accessing a database file concurrently, each process

can detect if other processes have changed the database

file by monitoring the file change counter. However, this

concurrency control design of SQLite induces signifi-

cant overhead on I/O traffic since the header page must

be flushed just to update 4 bytes of file change counter

for every write transaction. This results in a large per-

formance gap between WAL mode and the other jour-

nal modes in SQLite (DELETE, TRUNCATE, and PER-

SIST) since WAL mode does not use the file change

counter.

In this work, we devised a method called “Meta-

data Embedding” to reduce the overhead of flushing

database header page. In metadata embedding, we main-

tain the database header page at the RAM disk so that

the most recent consistent and valid version (“file change

counter”) in the database header page is shared by trans-

actions and the database header page is exempt from be-

ing flushed to the storage in every fsync() call. Since

the RAM disk is volatile, the file change counter in

the RAM disk can be lost. Therefore, in metadata em-

bedding, we let the most recent file change counter be

flushed along with the last modified B-tree node. When

a transaction starts, it reads the database header page at

the RAM disk to access the file change counter. When a

write transaction modifies the database table, it increases

the file change counter and flushes it to the database

header page at the RAM disk and to the last modified

B-tree node. Since the last modified B-tree node has to

be flushed to the storage anyway, metadata embedding

makes the modified file change counter persistent with-

out extra overhead.

2The race condition is handled by file system lock (fcntl()) in

SQLite.
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When a system recovers, the entire multi-version B-

tree has to be scanned by a recovery process. Therefore,

it is not a problem to find the largest valid consistent ver-

sion number in the database and use it to rollback some

changes made to the database file. If other parts of the

header page are changed, we flush the header page as

normal. Note that other parts of the header page are mod-

ified much less frequently than the file change counter.

5.3 Disabling Sibling Redistribution

Another optimization method used in LS-MVBT to re-

duce the I/O traffic is disabling redistribution of data en-

tries between sibling nodes. If a B-tree node overflows

in SQLite (and in many other server-based database en-

gines), it redistributes its data entries to left and right sib-

ling nodes. This is to avoid node split which requires

allocation of additional nodes and changes in the tree or-

ganization. This redistribution modifies four nodes - two

sibling nodes, the overflown node, and its parent node.

In general, it is well known in the database community

that sibling redistribution improves the node utilization,

keeps the tree height short, and makes search operation

faster, but we observed that it significantly hurt the write

performance in the Android I/O stack.

In flash memory, time to write a page (page program

latency) is 10 times longer than the time to read a page

(read latency)[19] and subsequently, from SQLite’s point

of view, database updates, e.g., insert, update, and delete,

take much longer than database search. Furthermore,

search operations in smartphones are not as dominant as

in client/server enterprise databases. Given these facts,

we devise an approach opposite to the conventional wis-

dom: we disable sibling redistribution. In LS-MVBT, if

a node overflows, we do not attempt to redistribute the

entries in the overflown node to its siblings. Instead, LS-

MVBT immediately triggers a lazy split operation.

6 Evaluation

We implemented the lazy split multi-version B-tree in

SQLite 3.7.12. In this section, we evaluate and analyze

the performance of the LS-MVBT compared to other

traditional journal modes and WAL mode. Our testbed

is Samsung Galaxy-S4 that runs Android OS 4.3 (Jelly

Bean) on Exynos 5 Octa Core 5410 1.6GHz CPU, 2GB

DDR2 memory, and 16GB eMMC flash memory format-

ted with EXT4 file systems.

Many latest smartphones, including Samsung Galaxy

S4, adjust the CPU frequency in order to save the power

consumption. We fixed the frequency to the maximum

1.6 GHz so as to reduce the standard deviation of the

experiments.

The evaluation section flows as follows. First, we ex-

amine the performance of SQLite transaction (insert)

under three different SQLite modes: LS-MVBT, WAL

mode, which is the default in Jelly Bean, and TRUN-

CATE mode, which is the default mode in Ice Cream

Sandwich. Second, we take a detailed look at the block

I/O behavior of SQLite transaction for LS-MVBT and

WAL. Third, we observe how the versioning nature of

LS-MVBT affects the search performance via examin-

ing the SQLite performance under varying mixture of

search and insert/delete transactions. Fourth, we

examine the recovery overhead of LS-MVBT and WAL.

The final segment of the evaluation section is dedicated

to quantifying the performance gain of each of the op-

timization techniques proposed in this paper, which are

lazy split, metadata embedding, and disabling sibling re-

distribution, in an itemized as well as in an aggregate

manner.

6.1 Workload Characteristics

To accurately capture the workload characteristics of the

smartphone apps, we extracted the database information

from Gmail, Facebook, and Dolphin web browser apps

in a testbed smartphone. Out of 136 tables in the de-

vice, the largest table contains about 4,500 records, and

only 15 tables have more than 1,000 records. It is very

common for smartphone apps to have such small num-

ber of records in a single database table unlike enter-

prise server/client databases. As most tables have less

than thousands of records, we focused on evaluating the

performance of LS-MVBT with rather small database ta-

bles. As for the reserved buffer space of LS-MVBT, we

fix it to one cell for all the presented experiments.

6.2 Analysis of insert Performance

In evaluating the SQLite transaction performance, we fo-

cus on insert since insert, update, and delete gen-

erate similar amount of I/O traffic and show similar per-

formances.

For the first set of experiments, we initialize a table

with 2,000 records and submit 1,000 transactions, each

of which inserts and deletes a random key value pair3. In

WAL mode, checkpoint interval directly affects the trans-

action performance as well as recovery latency: with

longer checkpoint interval, the transaction performance

improves but the recovery latency gets longer. In SQLite,

the default checkpoint interval is when 1,000 pages be-

come dirty. The default interval can be changed by a

pragma statement or a compile-time option. Checkpoint

also occurs when *.db file is closed. If an app opens

3The performance of sequential key insertion/deletion is not very

different from the presented results.
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Figure 6: Insertion Performance of LS-MVBT, MVBT,

and WAL with Varying Checkpointing Interval (Avg. of

5 runs)

and closes a database file often, WAL mode will perform

checkpointing operations frequently. For the comprehen-

siveness of the study, we vary the checkpoint intervals to

63, 125, 250, 500 and 1,000 pages. We first examine the

time for a single insert transaction. For a fair compar-

ison, the average insertion time in WAL mode includes

the amortized average checkpointing overhead.

Figure 6(a) illustrates the result. Insertion time of

MVBT and LS-MVBT consists of two elements: (i) the

time to manipulate the database which is essentially an

operation of updating the page content in memory, B-tree

insert, and (ii) the time to fsync() the dirty pages, DB

fsync(). Insertion time of WAL mode consists of three

elements: (i) the time to manipulate the database, B-tree

insert, (ii) the time to commit the log to storage, WAL

log, and (iii) the time for checkpointing, WAL CP.

The average insertion time of LS-MVBT (1.4 ms) is

up to 78% faster than that of WAL mode (2.0∼2.5 ms),

but the insertion time of the original MVBT is no better

than that of WAL mode. Throughout the various check-

pointing intervals, LS-MVBT consistently outperforms

WAL mode (even without including the checkpointing

overhead). There is another important benefit of using

LS-MVBT. In WAL mode, according to our measure-

ment, the average elapsed time for each checkpoint is

7.6∼9.2 msec which is ×3 the average insert latency.

Therefore, in WAL mode, the transactions that trigger

checkpointing suffer from sudden increases in the la-

tency. LS-MVBT outperforms WAL in terms of average

query response time as well as in terms of the worst case

bound.

We examine the number of dirty B-tree nodes per

insert in MVBT, LS-MVBT, and WAL mode (Fig-

ure 6(b)). The number of dirty B-tree nodes in LS-

MVBT is significantly lower than WAL mode. For an

insert, LS-MVBT makes just one B-tree node dirty

on average while WAL mode generates three or more

dirty B-tree nodes. In WAL mode, not all dirty B-tree

nodes are flushed to storage, but fsync() is called for

log file commit, and the dirty nodes are flushed by the

next checkpointing.

An interesting observation from Figure 6 is that the in-

sertion performance gap between LS-MVBT and WAL

is significant (40%) even when the checkpointing inter-

val is set to 1,000 pages. When the checkpoint interval is

63 pages, the average transaction response time of WAL

(2.5 msec) is 78% higher than that of LS-MVBT.

6.3 Analysis of Block I/O Behavior

For more detailed understanding, we delve into the block

I/O behaviors of SQLite transactions in LS-MVBT and

WAL mode. Figure 7 shows block I/O traces of an in-

sert operation in LS-MVBT and WAL mode. Let us first

examine the detailed block I/Os in LS-MVBT. When an

fsync() is called, the updated database file contents are

written to the disk. Then, the updated metadata for the

file is committed to EXT4 journal. For a single insert

transaction, one 4 KB block is written to the disk for file

update. Three 4 KB blocks are written to EXT4 journal,

which correspond to journal descriptor header, metadata,

and journal commit mark. In WAL mode, 8 KB blocks

are written to the disk for log file update. Eight 4 KB

blocks are written to EXT4 journal. If checkpointing oc-

curs, there will be more accesses to a block device.

Figure 7(a) and 7(b) show the number of accesses to

a block device when 10 insert transactions are submit-

ted. Interestingly, the total number of block device ac-

cesses for 10 insert transactions in WAL mode is 84%

higher than that in LS-MVBT. However, with 100 in-

sert transactions, the number of block device accesses in

WAL mode is only 46% higher than that in LS-MVBT

as shown in Figure 7(c) and 7(d). In LS-MVBT, the

number of block device accesses increases linearly with

the increased number of insertions whereas WAL mode

accesses block devices less frequently when the size of

batch insert transaction is larger.

Since WAL mode writes more data than LS-MVBT

per each block device access, we measure the amount of

I/O traffic caused in every 10 msec. Figure 8 shows the

block access I/O traffic for LS-MVBT and WAL mode.

For the experiment we submit 1,000 insert transactions

and measure how many blocks are accessed per every

9
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Figure 7: Block Trace of Insert SQLite Operation: LS-MVBT vs WAL

10 milliseconds. The block access I/O traffic per 10

milliseconds for LS-MVBT fluctuates between 24 KB

to 40 KB, and the EXT4 journal blocks are accessed

about 24∼44 KB per 10 milliseconds. In WAL mode, the

database file blocks are accessed only three times: when

the database file is opened, when checkpointing occurs

in 2.25 seconds, and when the database file is closed.

When the checkpointing occurs at 2.25 seconds, the

I/O traffic for WAL log file increases by approximately

20 KB, from 40 KB to 60 KB, but it decreases to 40 KB

when the checkpointing finishes at 2.6 seconds. In WAL

mode, the number of accesses to the EXT4 journal blocks

is consistently higher than any other block access types,

which explains why WAL mode shows poor insertion

performance. We are currently investigating what causes

this high number of EXT4 journal accesses in WAL

mode.

In summary, LS-MVBT accesses 9.9 MB (5 MB

EXT4 journal blocks and 4.9 MB database file blocks)

in just 1.8 seconds, while WAL accesses 31 MB blocks

(20.7 MB EXT4 journal blocks, 9.764 MB WAL log

blocks, and only 0.9 MB database file blocks) in 3 sec-

onds.

6.4 Search Overhead

LS-MVBT makes the insert/update/delete queries faster

at the cost of slow search performance. In LS-MVBT,

node access has to check its children’s version informa-

tion in addition to the key range. Moreover, LS-MVBT

does not perform sibling redistribution which results in

poor node utilization. Lee et al. [5] reported that write

operations are dominant in smartphone applications, and

the SQL traces that we extracted from our testbed device

confirm this. However, the search and the write ratio can

depend on individual user’s smartphone usage pattern,
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Figure 8: I/O Traffic at Block Device Driver Level (1,000

insertions)

hence we examine the effectiveness of LS-MVBT with

varying the ratio of search and write transactions. We

initialize a database table with 1,000 records, and sub-

mit a total of 1,000 transactions with varying ratios be-

tween the number of insert/delete and search trans-

actions. Each insert/delete transaction inserts and

deletes a random data from the database table, and the

search transaction searches a random data from the ta-

ble. For notational simplicity, we term insert/delete

as write.

Figure 9 illustrates the result. We examine the

throughput under three different SQLite implementa-

tions: LS-MVBT, WAL mode, and TRUNCATE mode.
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As we increase the ratio of search transactions, the over-

all throughput increases because a search operation is

much faster than a write operation. As long as at least

7% of the transactions are writes, LS-MVBT outper-

forms both WAL and TRUNCATE modes. In LS-MVBT,

the performance gain on write operations far outweighs

the performance penalty on search operations. This is

mainly due to asymmetry in latencies of writing and

reading a page in NAND flash memory: writing a page

may take up to 9 times longer than reading a page [19].

6.5 Recovery Overhead

Recovery latency is one of the key elements that

govern the effectiveness of a crash recovery scheme.

While WAL mode exhibits superior SQLite performance

against the other three journal modes, i.e., DELETE,

TRUNCATE, and PERSIST, it suffers from longer re-

covery latency. This is because in WAL mode, the log

records in the WAL file need to be replayed to recon-

struct the database. In this section, we examine the re-

covery latencies of TRUNCATE, WAL, and LS-MVBT

under varying number of outstanding (or aborted equiv-

alently) insert statements in an aborted transaction at the

time of crash: 10, 40, 160, 640, and 2560.

Figure 10 illustrates the recovery latencies of LS-

MVBT, WAL, and TRUNCATE. When the aborted trans-
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Figure 11: The average elapsed time and the number of

flushed dirty nodes per insertion. (Average of 1,000 in-

sertions): Rebalancing data entries hurts write perfor-

mance when a node splits.

action inserts less than 10 records, WAL mode recovery

takes about 4∼5 times longer than LS-MVBT. As the

transaction size grows from 10 insertions to 2,560 inser-

tions, WAL recovery mode suffers from a larger number

of write I/Os and its recovery time increases by 20%. LS-

MVBT recovery mode also increases by 28% but from

much shorter recovery time. TRUNCATE mode recov-

ery time slightly increases, by only 3%, but its recovery

time is already 3.9 times longer than LS-MVBT when

the transaction size is just 10. LS-MVBT needs to read

the entire B-tree nodes for recovery but it only updates

the nodes that should rollback to a consistent version.

6.6 Performance Effect of Optimizations

In order to quantify the performance effect of the opti-

mizations made on MVBT, we first examine the effect

of sibling redistribution in SQLite B-tree implementation

by enabling and disabling the sibling redistribution. We

use the average insertion time and the average number of

dirty B-tree nodes for each insertion as performance met-

rics in Figure 11. We insert 1,000 records of 128 bytes

into an empty table, and vary the node sizes of B-tree in

SQLite from 512 bytes to 8 KB.

Figure 11(a) shows the average insertion time when

sibling redistribution is enabled and disabled. When sib-

11
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ling redistribution is disabled, insertion time decreases as

much as 20%. In the original B-tree, 70% of the insertion

time is spent on fsync() and most of the improvement

comes from the reduction in fsync() overhead. Fig-

ure 11(b) shows the average number of dirty B-tree nodes

per a single insert transaction. With 1 KB node size,

the number of dirty pages in an insert is reduced from

3.7 pages to 2.4 pages if sibling redistribution is disabled.

Since metadata embedding can save another dirty page,

with disabled sibling redistribution and metadata embed-

ding, the average number of dirty B-tree nodes per a sin-

gle insertion transaction can drop down to fewer than 2

nodes, i.e., approximately 50% of disk page flush can be

saved.

With a larger node size, the number of dirty B-tree

nodes decreases because node overflow occurs less of-

ten. However, we observe that the elapsed fsync() time

grows with larger node sizes (4 KB and 8 KB) since the

size of nodes that need to be flushed increases, and also

the time spent in B-tree insertion code increases because

more computation is required for larger tree entries. Af-

ter examining the effect of B-tree node size on insert per-

formance (Figure 11), we determine that 4 KB node size

yields the best performance. In all experiments in this

study, B-tree node size is set to 4 KB. 4

6.7 Putting Everything Together

It is time to put everything together and examine real

world implications. In Figure 12, we compare the perfor-

mance of the multi-version B-trees with different combi-

nations of the optimizations for three different types of

SQL queries. The performances are measured in terms

of transaction throughput (number of transactions/sec).

MVBT denotes the multi-version B-Tree with disabled

sibling redistribution. MVBT + Metadata Embedding de-

notes the multi-version B-tree with metadata embedding

4With 4 KB of node size, an internal tree page of SQLite can hold

at most 292 key-child cells when the key is integer type while the max-

imum number of entries in leaf node is dependent on the record size.

optimization and disabled sibling redistribution. MVBT

+ Lazy Split is the multi-version B-tree with lazy split al-

gorithm and disabled sibling redistribution. Finally, LS-

MVBT denotes the multi-version B-tree with metadata

embedding, lazy split algorithm, and disabled sibling re-

distribution. All three schemes employ lazy garbage col-

lection and use one reserved buffer cell for lazy split.

We compare these variants of multi-version B-trees with

TRUNCATE journal mode and WAL mode.

TRUNCATE mode yields the worst performance (60

ins/sec), which is well aligned with previously reported

results [4]. Via merely changing the SQLite jour-

nal mode to WAL, we increase the query processing

throughput (insertions/sec) to 416 ins/sec. Via weav-

ing the crash recovery information into the B-tree, which

eliminates the need for a separate journal (or log) file,

and via disabling sibling redistribution, we achieve 20%

performance gain against WAL mode. Via augmenting

metadata embedding in MVBT, we achieve 50% perfor-

mance gain against WAL mode.

Combining all the optimizations we propose together,

(metadata embedding, lazy split, and disabling sibling

redistribution), we are able to achieve 70% performance

gain in an existing smartphone without any hardware as-

sistance.

7 Conclusion

In this work, we show that lazy split multi-version B-

tree (LS-MVBT) can resolve the Journaling of Journal

anomaly by avoiding expensive external rollback journal

I/O. LS-MVBT minimizes the number of dirty pages and

reduces the Android I/O traffic via lazy split, reserved

buffer space, metadata embedding, disabling sibling re-

distribution, and lazy garbage collection schemes.

The optimizations we propose exploit the unique char-

acteristics of Android I/O subsystem: (i) write is much

slower than read in the Flash based storage, (ii) domi-

nant fraction of storage accesses are write, and (iii) there

are no concurrent write accesses to database.

By reducing the underlying I/O traffic of SQLite,

the lazy split multi-version B-trees (LS-MVBT) consis-

tently outperforms TRUNCATE rollback journal mode

and WAL mode in terms of write transaction throughput.

One future direction of this work is to improve LS-

MVBT in order to support multiple concurrent write

transactions. With the presented versioning scheme,

modifications to B-tree nodes should be made in commit

order. As multicore chipsets are widely used in recent

smartphones, the need for concurrent write transactions

would increase and multi-version B-tree should be im-

proved to fully support concurrent write transactions.
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