
Multithread Content Based File Chunking System in CPU-GPGPU Heterogeneous
Architecture

Zhi Tang
Department of Electronics and Computer Engineering

Hanyang University
Seoul Korea

tangzhi@hanyang.ac.kr

Youjip Won
Department of Electronics and Computer Engineering

Hanyang University
Seoul, Korea

yjwon@hanyang.ac.kr

 Abstract—the fast development of Graphics Processing Unit
(GPU) leads to the popularity of General-purpose usage of
GPU (GPGPU). So far, most modern computers are CPU-
GPGPU heterogeneous architecture and CPU is used as host
processor. In this work, we promote a multithread file
chunking prototype system, which is able to exploit the
hardware organization of the CPU-GPGPU heterogeneous
computer and determine which device should be used to chunk
the file to accelerate the content based file chunking operation
of deduplication. We built rules for the system to choose which
device should be used to chunk file and also found the optimal
choice of other related parameters of both CPU and GPGPU
subsystem like segment size and block dimension. This
prototype was implemented and tested. The result of using
GTX460(336 cores) and Intel i5(four cores) shows that this
system can increase the chunking speed 63% compared to
using GPGPU alone and 80% compared to using CPU alone.

Keywords-CPU-GPGPU; Content Based File Chunking;
Deduplication; Incremental Modulo-K

I. INTRODUCTION

Accompany with the fast development of computing ability,
memory space and I/O bandwidth of massive multi-core
Graphics Processing Unit (GPU), the general-purpose usage
of GPU (GPGPU) has become popular [1]. The huge
number of cores in GPGPU (latest GTX590 contains 1024
cores) makes it efficient in processing large amount of data
and providing high parallelism. However, some specific
properties of GPGPU like memory hierarchy make it
impossible to substitute CPU which leads to the conclusion
that the CPU-GPGPU heterogeneous architecture will last
for a long time. In a CPU-GPGPU heterogeneous
architecture computer, CPU and GPGPU are integrated and
CPU is used as the host processor.

In this work, we use the high computational ability of
CPU-GPGPU architecture to accelerate the file chunking
phase of deduplication. Deduplication eliminates file
redundancy in block grained. Generally, it contains two
phase: file chunking phase and redundancy detection phase.
In file chunking phase, files are split into chunks and the way
of splitting mainly includes fixed size chunking and content
based chunking. Fixed size chunking is simple, fast but only
suitable for files that barely updated. Content Based

This work is sponsored by KOSEF through National Rese-
arch Lab at Hanyang University (R0A-2007-000-20114-0).

Chunking (CBC) is robust in detecting redundancy but it is
computationally expensive [2] since judging the chunk
boundary of a file takes a lot of computation. The
computational complexity of CBC operation is one of the
key issues that affect the performance of deduplication
system.

In this work, we designed a Content Based File Chunking
prototype system which includes a CPU chunking subsystem
and GPGPU subsystem. This heterogeneous system can
exploit the hardware organization of CPU-GPGPU
architecture and decide which subsystem will be used to
chunk a given file. Also, according to the information of the
input file and hardware organization of the computer, the
system is also able to set proper parameters to reflect the
capabilities of both CPU and GPGPU device in the computer.

II. RELATED WORKS

Deduplication can be used in many types of file systems
such as distributed and shared file system[3][4],
backup[5], peer-to-peer file system[6], web-proxy
server[7]. Won et al. found that chunking is one of the
major overheads for deduplication process[2][8]. Meister et
al. analyzed the deduplication efficiency under various
chunking scheme.

The chunking speed of fixed size chunking is very fast
but this method performs poor on finding redundancy of
shifted data stream. CBC overcomes this shortage [9]. CBC
is used in many application domains such as backups, file
system and data transfers [4][5][12][13][14][15].

Rabin fingerprint algorithm [12] is widely used [4][5] to
determine chunk boundary in content based chunking,
because of its algorithmic simplicity. Rabin fingerprint is
usually combined with Sliding Window Algorithm[4] to do
content based chunking. To prevent the appearance of too
small and too large chunks, minimum and maximum bound
on chunk size are enforced [4]. Tang et al. introduced a
chunk size control algorithm: Two Thresholds, Two divisors
(TTTD), which sets a minimum and maximum boundary on
chunk size and uses two divisors. TTTD was proven to have
only 62.5% overhead of using Rabin fingerprint algorithm
alone [10]. Youjip Won et al. developed the incremental
Modulo-K algorithm in the PRUN system to simplify the
computations needed for generating one signature which was
proven to be 40% faster than the Rabin fingerprint algorithm
while doing file chunking [2].

2011 First International Conference on Data Compression, Communications and Processing

978-0-7695-4528-8/11 $26.00 © 2011 IEEE

DOI 10.1109/CCP.2011.20

58

Although the PRUN system is proven to be efficient in
chunking, it can not fully utilize the computing resources
thoroughly as the hardware organization is changing all the
time. The advancement of massive multicore processors
makes multithread a way to improve the performance of
content based chunking. In this paper, not only the multicore
CPU, but also GPGPU will be brought into accelerating
content based chunking.

We built a heterogeneous system which implements
content based chunking by using either CPU or GPGPU in a
CPU-GPGPU integrated computer. This system is mainly
motivated by PRUN system, however, it can exploit the
hardware organization of computer and coordinate CPU and
GPGPU to do content based multithread file chunking. This
system is also implemented and tested in this work.

The organization of this paper is as following, Section
is about the system design and some related issues of this
prototype system, Section is about the determination of
which device would be used to chunk input files. Section
shows the performance of this system, Section is the
conclusion.

III. SYSTEM DESIGN

A. System Architecture
As mentioned above, this prototype system was designed to
fully utilize computing resource of CPU-GPGPU
heterogeneous system. Therefore, the first step of this system
is to get the hardware information of the computer and then
based on this, determining whether CPU or GPGPU will be
used to chunk file. The way of how to decide whether CPU
or GPU would be used will be discussed later.

The architecture of this system will be shown in Fig. 1.
As mentioned in Section this system includes both CPU
subsystem and GPGPU subsystem. After either CPU
subsystem or GPGPU subsystem has been chosen, file
chunking would start. The input file will be separated into
several segments and assigned to several threads to be
chunked in parallel in both CPU and GPU.

As shown in Fig. 1, the main difference between these
two subsystems is: in CPU subsystem, every thread will be
in charge of chunking several segments; and in GPGPU
subsystem, one thread will be responsible of chunking only
one segment. This difference is caused by the different
threads switching schemes of CPU and GPGPU.

Thread switching in CPU includes the suspending of the
current thread, saving its state (e.g., registers), and then
restoring the state of the thread switched to which cause a lot
of switching overhead in system. However, threads in
GPGPU are lightweight and almost have no switching
overhead. Threads in GPGPU will be grouped into warps to
schedule. Every warp contains 32 threads. Since the memory
instructions in GPGPU, especially global memory
instructions, have big overhead, the instant switching of
warps can be used to hide memory instruction latency. Once
the GPGPU meets memory instruction, it switches to other
warps to execute their arithmetical instructions. Fig. 2 shows
the GPGPU warp scheduler.

Because of these two different thread switching schemes,
number of threads in CPU subsystem should be equal to the
number of CPU cores and number of threads in GPGPU
subsystem should be as much as possible. Meanwhile, the
biggest number of threads in GPGPU subsystem is the
number of segments of the input file. Therefore, in GPGPU
subsystem, the number of threads should be equal to number
of segments and every thread chunks one segment.

B. Chunking Algorithm
The chunking algorithm used in this system is the same as
the PRUN system. Generally, The chunking algorithm of
both CPU and GPGPU subsystem are the same as PRUNE,
the incremental Modulo-K algorithm combining with the
BSW and with minimum and maximum bound on chunk
size.

However, the key issue of a multithread chunking system
is making sure no matter what segment size and degree of
multithread will be used, the output of chunking a same file
must be the same. This is to make sure that if different client
machines are backing up a same file, the server will store
same chunks for this file.

59

As shown in Fig.3, S1 and S2 are two neighbored segments
with size 50Kbyte and S1’ and S2’ are the same piece of file
but separated into two 60Kbyte segments. Suppose this piece
of file has three chunk points C, F and D, as shown in Fig. 3.
If using two threads to chunk segments S1 and S2, there will
be two chunks CE and E’D with size 3Kbyte and 4Kbyte
since chunk point F will be ignored because the first 2Kbyte
of S2 was jumped by using minimum bound on chunk size.
However, if using two threads to chunk 60Kbyte segments
S1’ and S2’, the same piece of file will have two chunks CF
and FD. This is one possible chunking variability problem.

To prevent the appearance of chunking variability, a dual
mode chunking scheme was used in this work. Dual mode
chunking scheme contains two chunking mode, bare mode
which chunks file without minimum and maximum
boundaries and accelerate mode which chunks file with
minimum and maximum boundaries. Besides the first
segment of a file, threads start chunking segments by using
bare mode, then after the first appearance of a chunk whose
size is in [minimum, maximum–minimum] and not the first
chunk of this segment, the accelerate mode will be switched.

C. Coalescent
The dual mode scheme successfully prevents the happening
of the situation in which chunk points within the minimum
bound of the beginning of segment will be ignored.
However, it might produce chunks whose size is bigger than
the maximum bound or smaller than the minimum bound.
What’s more, it still can not prevent the chunking variability
problem. As shown in Fig. 3, if using dual mode scheme, S1

and S2 would have chunks CE, E’F and FD while S1’ and S2’
would still have chunks CF and FD. This is caused by the
different ending points if using different segment sizes.

To make sure chunk variability will not happen, the
temporal output of all threads need to be coalesced. The
coalescing of chunks has 2 steps as shown in Fig. 4. First,
merge a chunk whose size is less than the maximum bound
with the next chunk to check whether the size of the new
chunk is bigger than maximum bound. If not, the new chunk
will be put into the final chunk list. Else, split it into two
parts, one with size of maximum size, put into the final
chunk list and the other one will be put into the temporal list
again. Secondly, for chunks whose sizes are bigger than the
maximum bound, split them into two chunks immediately.

IV. CHOOSING DEVICE

The main difficulty in this heterogeneous system is to find
the rules of choosing a device between the CPU and
GPGPU to do the chunking related computations. To find
the rules of determining which device would be used, we
need to find the elements that affect the chunking
performance in this system. We consider the elements that
affect the chunking performance of CPU and GPGPU
subsystem separately.

A. CPU chunking subsystem
Firstly, we consider the CPU chunking subsystem. We
implemented the CPU chunking subsystem and tested it to
find the elements that affect the performance of CPU
chunking subsystem.

A computer integrates both multicore CPU and GPU was
used here. The hardware specification of this computer A is
shown in Table 1 and Table 2 contains the data sets that will
be used to test this system.

CPU i5 760(four cores) 2.66GHZ
GPGPU GTX460(336 cores) 1350 MHz

1GB Global memory
Storage 3TB(RAID 0) 380MB/Sec
RAM DDR3 2GB

Name Type Description
A rmvb Single file, size range from 10Kbyte

to 512MByte
B iso, rar

avi, zip
jpg, exe
cab, pdf
other

Real data set from the backup server
of lab, contains 487 files in total, the
total size is 2.929GByte, average
size is 6.015MByte

It’s clear that number of CPU cores is an element that
affects the chunking speed of CPU subsystem since it
directly affects the thread degree. In order to test the effects
of thread degree, the number of threads will be set to be 1, 2,
3, 4 separately to chunk a 256MByte file in data set A of
Table 2. And the segment size ranges from 32Kbyte to

60

1Mbyte to show the effect of segment size. The result was
shown in Fig.5 (a).

Meanwhile, since size of real files ranges from several
bytes to thousands of Mega bytes, we need to test the effect
of file size too. As shown in Fig.5 (b), 16Mbyte, 32Mbyte,
64Mbyte, 128Mbyte and 256Mbyte files would be chunked
under different segment sizes by four threads.

Chunking speed of using CPU subsystem alone shows that
file size doesn’t have big influence on the chunking speed.
For different file sizes, the chunking speed is almost stable
with same segment size and threads number. However,

number of threads does affect the chunking speed greatly.
Also, segment size influences the chunking speed a lot, if the
segment size is 32Kbyte, its chunking speed of using 4
threads is only 280Mbyte/Sec while 256Kbyte segment size
has nearly 330Mbyte/Sec chunking speed.

To get the highest chunking speed, obviously, the degree
of threads should be equal to the number of CPU cores. It
will not have thread switching latency and utilize the
computing capability of CPU thoroughly. Therefore,
segment size and number of CPU cores are elements that
affect the chunking speed of CPU chunking subsystem.

(a) Chunking 256MByte file (b) Chunking different files with 4 threads

B. GPGPU chunking subsystem
Then the elements that affect the chunking speed of GPGPU
chunking subsystem would be considered. As we used
Nvidia graphics card and CUDA platform, number of
GPGPU cores, the block dimension which is number of

threads and segment size might be the elements affect the
performance of GPGPU chunking subsystem. We also used
the computer A in Table 1 to test the effect of these three
elements. Files used here are the same as used in section -
A to test CPU subsystem. .

(a) file size = 256MByte (b) Comparison

Firstly, we used different segment size and block
dimension which means number of threads per block to
chunk a 256MByte individual file. The chunking speed
result was shown in Fig. 6a. Besides block dimension is one,
the chunking speed of GPGPU subsystem varies greatly as
different segment size and block dimension are used.

The block dimension 64 and segment size 16Kbyte
produce highest chunking speed of chunking this 256Mbyte
file. However, the chunking speed of block dimension 64
vibrates greatly as the segment size varies. Meanwhile, we
found that block dimension 96, 128 threads/block produce
comparable stable chunking speed as the segment size

ranges from 16Kbyte to 64Kbyte, and also the chunking
speed of segment size 16Kbyte and 64Kbyte are the
segment size that have highest chunking speed.

Therefore, we use four combinations of 96, 128 block
dimension and segment size 16Kbyte, 64Kbyte which are
16Kbyte/96, 16Kbyte/128, 64Kbyte/96, 64Kbyte/128
respectively to chunk files with different sizes which ranges
from 16Mbyte to 256Mbyte. The result was shown in Fig.
6b. The result shows that 16Kbyte performs better than
64Kbyte segment size. What’s more, Fig. 6b shows that the
chunking speed of GPGPU varies greatly as the size of files
vary.

61

We can get that file size, block dimension, segment size
directly affect the chunking performance of GPGPU
subsystem. Block dimension is dependent on file size,
segment size and GPGPU cores, therefore, number of
GPGPU cores, file size and segment size are elements that
affect the performance of GPGPU subsystem.

C. Determing rules
As shown in sections -A and -B, elements involved in
determining the performance of two subsystems including,
number of CPU cores, number of GPGPU cores, segment
size and file size. Among these four facts, segment size is
flexible and decided by the user, also, the optimal value of
segment size in CPU and GPGPU subsystem is different.
Therefore, if we use a function f to describe the rules that
which device should be chosen to chunk files, it contains
number of CPU cores, number of GPGPU cores and file size
as parameters. After whether CPU or GPGPU will be used is
determined, the value of segment size can be determined by
the subsystem itself. f can be written as in (1).
 (, ,)f C G F (1)

, ,C G F in (1) stand for number of CPU cores, number
of GPGPU cores and file size separately. To study the
influence of these 3 parameters more accurately, some more
experiments need to be carried out. Also a new computer B
with different devices integrated as shown in Table 3 will be
introduced in this section to do experiments.

Table 3 Hardware specification of Computer B
CPU Intel Core E7500

(2 cores)
2.93GHZ

GPGPU 9600GT(64 cores) 1500 MHz
512MB Global memory

Storage 320GB 136MB/Sec
RAM DDR2 2GB

To show the influence of file size clearly, use Intel i5,
Intel E7500, 9600GT and GTX460 to chunk files with
different size and then write down the highest chunking
speed of all devices. The result was shown in Fig. 7.

Fig.7 shows clearly that no matter what CPU and
GPGPU are installed in one computer, files smaller than
8MByte should be chunked by CPU since even 336 cores
GPGPU performs poorer than a two cores CPU. For files

bigger than 8MByte, both the number of cores of CPU and
GPGPU need to be considered. From Fig. 5, a simple
conclusion that one thread of CPU subsystem can get nearly
90MByte/Sec chunking speed can be achieved. Also from
Fig. 6, for the optimal choice of segment size and block
dimension, one GPGPU core can generally have a highest
chunking speed of 2Mbyte/Sec. Therefore, Equation 2 can be
derived. Also results in Fig. 7 can help proving Equation 2.
While doing content based chunking, the two cores CPU is
more efficient than 64 cores 9600GT while 336 cores
GTX460 is more efficient than 4 cores CPU.

() () true use CPUC*90 G *2 {false use GPGPU>= = (2)

If CPU was used, the only thing left is to determine the
number of threads and segment size. And the number of
threads of course should be the number of CPU cores. From
Fig. 5, it’s easy to see that when file size is equal to or bigger
than 16Mbyte, the size of segment should be between
128Kbyte and 256Kbyte which produces the highest
chunking speed for all choices of threads number. For files
smaller than 16MByte, the CPU subsystem will be tested
again (Intel i5 used) to get the optimal segment size. The
result was shown in Fig. 8. Files between 16Mbyte and
8Mbyte should still have 256Kbyte as segment size while
files smaller than 8Mbyte should use 64Kbyte as segment
size.

If GPGPU subsystem was used, besides segment size,
block dimension also need to be determined by using file
size and number of GPGPU cores. From Fig. 6, segment size
16Kbyte has best performance which means the GTX460
device can use 16Kbyte as the segment size while chunking
files. However, the segment size that might produce the
highest chunking speed might differ from the GPGPU cores
one GPGPU device can have. Therefore, we test the 9600GT
card and then compare to the GTX460 card.

We test the chunking speed of using GPGPU subsystem to
chunk individual files in Data set A under segment size
16Kbyte, 32Kbyte and 64Kbyte and block dimension 96 and
128. The result was shown in Fig. 9. As shown in Fig. 9, the
x axis stands for the device type and size of file it chunked. 1
stands for the 9600GT card while 2 stands for GTX460, i.e,
1,8M means using 9600GT card to chunk a 8Mbyte file.

62

Although the chunking speed varies according to the block
dimension and segment size, generally, for both cards,
segment size of 64Kbyte and the block dimension 128
threads/block have the best chunking speed for almost all
situations. Therefore, these two values would be used in the
GPGPU subsystem. The detail of determining the best
segment size and block dimension is out of scope of this
paper which needs to consider the programming model,
hardware organization of the GPGPU device.

(a) Block dimension = 96

(b) Block dimension=128Kbyte
Fig. 9 Chunking speed of two different GPGPU devices

V. EXPERIMENT

So far, the rules of determining whether CPU or GPGPU
subsystem should be used are determined. Also the values
of best segment size of using both CPU and GPGPU
subsystem and the optimal block dimension of GPGPU
system have been found. Then the performance of the
overall system should be tested. Computer A in Table 1
was used to test the performance of the overall system.

 Firstly, files in data set A of Table 2 are used to test
the system. Besides testing the overall system, CPU and
GPGPU subsystem will be tested as comparison. Fig. 10
shows the result of chunking single file in data set A. The
result shows that the overall system can reflect the best
performance of both CPU and GPGPU. Then data set B in
Table 2 is used to test the system again to find out how this
heterogeneous system works on real world.

Fig. 10 Performance of chunking single file

The segment size is set to be 256Kbyte for CPU and
64Kbyte segment size, 128threads/block is set as block
dimension for GPGPU. The chunking speed of using CPU
only is 218Mbyte/Sec, using GPGPU only is
242Mbyte/Sec and the heterogeneous system reaches
393MByte/Sec. This system can increase the chunking
speed 63% compared to use GPGPU alone and 80%
compared to use CPU alone.

VI. CONCLUSION

In this work, we built a multithread file chunking system
in CPU-GPGPU heterogeneous architecture system to
coordinate CPU and GPGPU devices to accelerate the
content based file chunking operation of deduplication
system. This system can exploit the hardware information
of computer and combining it with the choosing rule to
choose the device that has faster chunking speed. At last, a
real data set achieved from the lab server was used to test
how this system works with real data. Using the devices
GTX460(336 cores) and Intel i5(four cores), the system
successfully shows that it can increase the chunking speed
63% compared to use GPGPU alone and 80% compared to
use CPU alone.

REFERENCES

[1] Owens, J. D., D. Luebke, et al. (2007). "A Survey of General-
Purpose Computation on Graphics Hafrdware. " Computer
Graphics Forum 26(1): 80-113.

[2] Youjip Won, Rakie Kim, Jongmyeong Ban et al., "PRUN:
Eliminating Information Redundancy for Large Scale Data Backup
System," iccsa, pp.139-144, 2008.

[3] B. Hong, D. Plantenberg, D. Long, and M. Sivan-Zimet,
“Duplicate data elimination in a SAN file system,” in Proceedings
of the 12th NASA Goddard, 21st IEEE Conference on Mass
Storage Systems and Technologies (MSST 2004). Citeseer, 2004,
pp. 301–314.

[4] A. Muthitacharoen, B. Chen, and D. Mazi`eres, “A low-bandwidth
network file system,” SIGOPS Oper. Syst. Rev., vol. 35, no. 5, pp.
174–187, 2001.

[5] B. Zhu, K. Li, and H. Patterson, “Avoiding the disk bottleneck in
the data domain deduplication file system,” in FAST’08:
Proceedings of the 6th USENIX Conference on File and Storage
Technologies. Berkeley, CA, USA: USENIX Association, 2008,
pp. 1–14.

[6] P. Reynolds and A. Vahdat, “Efficient Peer-to-Peer Keyword
Searching,” LECTURE NOTES IN COMPUTER SCIENCE, pp.
21–40, 2003.

[7] M. Mitzenmacher, “Compressed bloom filters,” IEEE/ACM Trans.
on Networking, vol. 10, no. 5, pp. 604–612, October 2002.

63

[8] Youjip, W., B. Jongmyeong, et al. (2008). "Efficient index lookup
for De-duplication backup system. " Modeling, Analysis and
Simulation of Computers and Telecommunication Systems, 2008.
MASCOTS 2008.

[9] Dirk, M., Andr, et al. (2009). "Multi-level comparison of data
deduplication in a backup scenario. " Proceedings of SYSTOR
2009: The Israeli Experimental Systems Conference. Haifa, Israel,
ACM.

[10] Kave Eshghi, H. K. T. (September 22, 2005). "A Framework for
Analyzing and Improving Content-Based Chunking Algorithms."

[11] M. O. Rabin, “Fingerprinting by random polynomials,” 1981.
[12] Neil, T. S. and W. David (2000). "A protocol-independent

technique for eliminating redundant network traffic." SIGCOMM
Comput. Commun. Rev. 30(4): 87-95.

[13] Jeffery, C. M., C. Yee Man, et al. (2004). "Design,
implementation, and evaluation of duplicate transfer detection in
HTTP. " Proceedings of the 1st conference on Symposium on
Networked Systems Design and Implementation - Volume 1. San
Francisco, California, USENIX Association.

[14] Himabindu Pucha, D. G. A., Michael Kaminsky (April 2007).
Exploiting Similarity for Multi-Source Downloads Using File
Handprints. 4th Symposium on Networked System Design and
Implementation (NSDI '07), Cambridge, MA.

[15] Landon, P. C., D. M. Christopher, et al. (2002). "Pastiche: making
backup cheap and easy." SIGOPS Oper. Syst. Rev. 36(SI): 285-
298

64

