
MNFS: Mobile Multimedia File System
for NAND Flash based Storage Device

Hyojun Kim
Samsung Electronics Co., Ltd.,

Korea 442-600
zartoven@samsung.com

Youjip Won
ECE division of Hanyang University

yjwon@ece.hanyang.ac.kr

Abstract

In this work, we present a novel mobile multimedia
file system, MNFS, which is specifically designed for
NAND flash memory. It is designed for mobile
multimedia devices such as MP3 player, Personal
Media Player (PMP), digital camcorder, etc. Our file
system has three novel features important in mobile
multimedia applications: (1) predictable and uniform
write latency, (2) quick file system mount, and (3)
small memory footprint. We implement the proto-type
file system on ARM9 embedded platform. In
experiments, MNFS exhibits uniform I/O latency for
sequential write operation. It is mountable within 0.2
seconds, and available with only 34Kbytes heap
memory for 128Mbytes volume. Compared to YAFFS
which is the de facto standard file system for NAND
flash memory, the mounting time is 30 times faster and
the heap memory usage is only 5% of YAFFS usage.

Keywords – Multimedia, Flash Memory, File
System, I/O latency, Mobile Device

1. Introduction

1.1 Motivation

Due to the rapid advancement in computer
architecture, storage system and etc., we can now bring
large amount of data in daily life in extremely portable
manner and further can access it instantaneously.
Mobile multimedia devices, e.g. MP3 player, Portable
Multimedia Player, digital camcorder are typical
examples. Current state of art file system, storage
system, and encoding/decoding technology opens up
an opportunity for the end users to enjoy various
multimedia services in extremely portable fashion.
Different from the workloads which can be observed in
commodity computer system, the I/O workload
generated in mobile multimedia device exhibits rather

unique characteristics. In MP3 player, for example,
large size file which is usually more than 2-3 Mbytes is
first cached onto memory and is played back. This is
primarily to reduce the energy consumption and to
make the storage device in inactive state whenever it is
possible. In digital camcorder, the captured images are
continuously feed into storage device and file system is
required to handle isochronous write requests in
efficient fashion. That is, multimedia files are
sequentially accessed and not updated often.
Meanwhile, one of the main drawbacks of NAND flash
device is that a page is not updatable without block
erasure. Because multimedia files are rarely updated,
NAND flash based storage subsystem can provide very
efficient solution for mobile multimedia device.
However, there are a number of issues we like to
address in this work. While the NAND flash device
carries very desirable characteristics for mobile
multimedia application, the commodity file system
leaves much to be desired to exploit the workload
characteristics and the characteristics of storage media
itself.

Irregular write-responses are major problem of
existing file system for mobile devices. To record
multimedia data generated in real time, predictable and
uniform write latency is required. It will be more
critical as the bandwidth of mobile multimedia is
increasing. Quick mounting is basic requirements for
mobile devices. Nobody wants to wait tens of seconds
to take picture with digital camera. Small memory
footprint is also important for mobile devices.
Generally, available memory is restricted in mobile
devices because of cost and other reasons. Of course,
the performance of file system is important.

1.2 Related works

To use flash memory as file system storage, Flash
Translation Layer (FTL) was developed [1]-[3]. FTL is
a software layer which emulates hard disk with flash

208

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE CCNC 2006 proceedings.

1-4244-0086-4/06/$20.00 ©2006 IEEE.

memory. FTL covers flash memory’s write-once, bulk
erasable characteristics with its mapping algorithm.

Flash native file systems were designed only for
flash memory to remove FTL overhead. Microsoft
Flash File System is a flash native file system using
linked-list data structure for NOR flash memory [4].
Later, Log-structured File System (LFS) structure [5]
was adopted to flash file system. JFFS is the first flash
file system that adopts LFS structure based on NOR
flash memory. Later, it was developed to JFFS2 and
widely used in Linux domain [6]. JFFS2 was then later
extended to support NAND flash memory, but it could
not show optimized performance because NAND flash
memory has different characteristics. In 2000, YAFFS
was designed for NAND flash memory [7]. It is
another log-structured flash file system which is
optimized for NAND flash memory.

Currently, LFS style flash file system has become
major trend. Despite its widespread adoption, it suffers
from important problems. It requires large amount of
memory for mapping table. Further, file system mount
latency is very large. Unless these issues are resolved
properly, it cannot be adopted easily in mobile device.

To reduce mapping table size, Li-Pin Chang and
Tei-Wei Kuo proposed a flexible management scheme
for large-scale flash-memory storage systems [8].
However, to apply this method on real FTL or flash
file system, the number of consecutive sectors to be
written must be known when the first sector is written.
POSIX compliant file system interface does not carry
this information and therefore to realize this feature we
need to re-define the file system interface.

Garbage collection of log-structured flash file
system and sector mapping FTL is the prime cause for
largely variable write latency. In garbage collection
process, obsolete logs are cleaned by copying some
pages and erasing block. It takes a long time compared
to single page write. Therefore a new garbage
collection method was proposed by Li-Pin Chang et al.
for hard real-time applications [9]. They proposed to
use background tasks which are activated periodically
for background garbage collection to guarantee
deterministic write-responses of real-time tasks. This
scheme requires real-time operating system.

In this paper, we present MNFS, a multimedia file
system for NAND flash based storage device focusing
on workloads of mobile multimedia files. We assume
that mobile multimedia files have larger size and rarely
updated. The goal was to optimize sequential writing
performance rather than overwriting performance. The
design criteria called for the MNFS to be deterministic
and have uniform write-responses.

We implemented prototype MNFS on ARM9
platform. For evaluation, we examined the
performance of MNFS with YAFFS [7] and FAT file

system [11]. It is observed that MNFS successfully
address the issue in existing flash file system and
exhibits much better write performance with less
variable latency.

The rest of this paper is organized as follows. Next
section explains key idea of MNFS design. Following
section describes experimental results. Conclusions
and future work are described in final section.

2. MNFS Design

Key ideas of MNFS are (1) hybrid mapping, (2)

block based file allocation, (3) iBAT (in-core only
Block Allocation Table) and (4) upward directory
representation. By these methods, MNFS achieves
uniform write-responses, quick mounting, and small
memory footprint.

2.1 Hybrid mapping algorithm

In NAND flash memory device, smallest unit of

write operation is a page (512-2,048 Bytes). Due to the
physical characteristics, write operation requires that
the existing contents are first erased. The unit of erase
operation is a block and a block consists of 32 or 64
pages. Therefore, even though the write size is much
smaller than single block, irrelevant pages in the same
block needs to be erased. There are a number of
different approaches to resolve this issue. SmartCardTM
[10] uses block mapping algorithm. To update page, it
allocates a new block and copies original pages to the
block except the page to be updated. The new page is
written to the new block which in turn causes the block
mapping information to change. YAFFS [7] uses page
mapping algorithm. It writes a log to any empty page,
and maintains the page-level mapping table. Page
mapping method is efficient for frequent updates, but
requires large translation table in main memory.
Meanwhile block mapping method requires small
translation table, but not efficient for frequent updates.

In MNFS, we propose hybrid mapping algorithm.
We exploit the access characteristics of the respective
region and apply block and page mapping algorithm
based upon the frequency of update operation. File
system metadata is updated whenever a file is created,
deleted, and appended. Therefore, it is to be updated
frequently and MNFS uses page mapping algorithm
(log-structured method) for file system metadata. On
the other hand block mapping algorithm is used for
user data because it is rarely updated in mobile
multimedia devices. Figure 1 shows basic structure of
MNFS using hybrid mapping algorithm.

209

User Data AreaMetadata Area

Frequent Update
 Page Mapping Algorithm

Allocation / Free
 Block Mapping Algorithm

Log Data Free ..Data Data Log Free Log

Log Log Log Data Data Data

NAND flash memory blocks

Figure 1 File system organization of MNFS

MNFS uses log structure to manage file system

metadata. The log blocks are sorted in temporal order
and managed by linked list. The first page of a log
block contains log block header in main area, and log
block sequence number in spare area. Log block header
contains file system configuration information, e.g.
partition information and MNFS signature. The
remaining pages of log block are used for directory
entries. Each directory entry represents a file or a
directory. It contains file (or directory) name, size,
attribute, creation date and time, etc. A unique ID is
assigned to each directory entry, and stored in spare
area. Because directory information resides in log
block, updating of the directory entry is done by
writing new directory entry to the end of the log. There
can be multiple entries which have same ID, at that
time the most recently written entry is valid. Figure 2
shows the structure of the log block.

Dir. Entry ID

Seq. #Header

Dir. Entry ID

Main Area Spare Area

Free Pages

Figure 2 Log block structure of MNFS

2.2 Block based file allocation

Multimedia file, e.g. music or video clip, is order of
magnitude larger than the text based file. Therefore
MNFS uses larger allocation unit than the block size
(usually 4 Kbytes) of legacy general purpose file
system. MNFS defines the allocation block size of file
system as the block of NAND flash memory. The
block size of NAND flash memory ranges from
16Kbyte to 128Kbyte and this size is device specific.
There are important advantages of defining device
block as file allocation unit.

Because erase operation in NAND flash memory is
performed in block unit, all allocated blocks to a file
can be erased when the file is deleted. NAND flash
memory must be erased to update by its nature, and
MNFS processes the erase job on file deletion time.
Other flash file systems, such as JFFS2 and YAFFS,
do not erase NAND flash memory when a file is
deleted, and later, NAND flash memory is erased by
garbage collector during writing process. Because the
block erasing time is about 6 – 10 times longer than
page writing time, erase operation during write request
makes it is hard to get uniform write-responses.
Because MNFS erases all block when the blocks are
released, MNFS can write pages in constant time
without block erasing. Of course, file deletion time of
MNFS becomes longer than other file systems. But, we
think, uniform write-responses are much more
important than fast file deletion. And, the file deletion
time can be reduced at newer NAND devices such as
OneNANDTM which supports multiple block erase
function. OneNANDTM can erase up to 64 blocks
within constant 4ms [13].

2.3 iBAT: in-core only Block Allocation Table

MNFS proposes iBAT for both uniform write-

response and robust file system. Previous file systems
use I-nodes or FAT table to manage cluster based
allocations. In spare area of MNFS data block,
directory entry ID and block number is stored.
Directory entry ID represents the file the block belongs
to, and block number represents logical position in the
file. FAT-like iBAT is constructed at mounting time by
scanning spare area of all blocks. That is, MNFS does
not maintain concentrated data structure in NAND
flash storage like FAT table. This design is for uniform
write-responses. In FAT file system, as file size grows,
a new cluster is allocated periodically, and it takes time.
In MNFS, no additional metadata modification is
needed because there is no concentrated metadata for
block allocation in NAND flash memory. And more
this design can enhance robustness of file system
because both allocation information and user data can
be written by one page write.

2.4 Upward directory representation

Legacy file systems use a directory file to represent
hierarchal directory structure. Directory file contains
child file/directory information and it is managed by
same fashion with a normal file in the file system.
MNFS does not use the method. The reason is update
frequency of directory file. The key assumption for
MNFS design is rare updates of multimedia data. If we

210

use directory file method in MNFS, the assumption
becomes invalid because the contents of directory file
will be frequently updated even for multimedia files.
Instead of it MNFS uses upward directory
representation method. In the method, each directory
entry resides in the log block has its parent directory
entry ID. That is, child entry points its parent entry.
For example, directory hierarchy of Figure 3 can be
represented as shown in Table 1.

Figure 3 Example of directory representation

Table 1 Directory and parent directory entry ID

Directory
Entry ID

Name Parent Directory
Entry ID

0 MNFS Volume 0
1 Animals 0
2 Birds 1
3 Tiger 1
4 Eagle 2

3. Experiments

We compared MNFS with YAFFS, and FAT file
system on evaluation board which has ARM920T core
processor. Main clock speed of the processor was 203
MHz and we used 1Gbits small block NAND flash
memory. We used commercial FTL, XSR for FAT file
system.

3.1 Write performance test

We measured write performance while we were

filling clean 128Mbytes flash storage with random
sized multiple files. Figure 4 shows the result. Average
writing speed of YAFFS is 686 Kbytes/second and
average writing speed of FAT file system is 278
Kbytes/second. MNFS is faster than other file systems.
Average writing speed of MNFS is 1,538
Kbytes/seconds. YAFFS allocates memory table
dynamically while processing write-requests. Because
it causes heavy computational overhead, the
performance of YAFFS is worse than MNFS for
sequential writes even there are no garbage collections
for the test.

0

200

400

600

800

1000

1200

1400

1600

1800

4
M
B

4
M
B

3
M
B

4
M
B

3
M
B

1
M
B

2
M
B

3
M
B

1
M
B

2
M
B

3
M
B

5
M
B

4
M
B

3
M
B

1
M
B

4
M
B

4
M
B

3
M
B

2
M
B

2
M
B

2
M
B

1
M
B

2
M
B

2
M
B

2
M
B

2
M
B

3
M
B

5
M
B

2
M
B

5
M
B

4
M
B

1
M
B

2
M
B

2
M
B

5
M
B

3
M
B

4
M
B

4
M
B

2
M
B

5
M
B

3
M
B

4
M
B

(C reating file size)

(KB /s) Y AFFS FAT M N FS

Figure 4 Sequential writing speed

3.2 File deletion test

We deleted random size files and measured
processing time. Figure 5 shows file deletion time in
milliseconds unit. File deletion speed of MNFS is
much slower than other file systems and proportional
to deleting file size because MNFS erases all blocks
which are used for deleting file.

0

50

100

150

200

250

300

350

400

450

4
M
B

1
M
B

2
M
B

4
M
B

3
M
B

2
M
B

2
M
B

3
M
B

3
M
B

2
M
B

4
M
B

3
M
B

2
M
B

3
M
B

2
M
B

2
M
B

2
M
B

2
M
B

3
M
B

1
M
B

1
M
B

4
M
B

3
M
B

4
M
B

2
M
B

(D eleting file size)

(m s) Y A FFS FA T M N FS

Figure 5 File deletion time

3.3 Uniform write-response test

We had created and removed random sized files to
make storage fragmentation. After that, we created
64Mbytes sized file by 2,048 writes of 32Kbytes buffer.
We measured each write-response time and Figure 6
shows the results. The responses of YAFFS for first
2Mbytes area were around 520ms because of garbage
collection delay. After that, write-responses were
uniformly 47ms. Except garbage collection, YAFFS
responses are very uniform but the garbage collection
is not predictable normally. The responses of FAT file
system are too irregular. The longest response time
was 1,832 ms.

211

The responses of MNFS were 21ms or 22ms
uniformly. The result shows that sequential writes of
MNFS are perfectly uniform.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 100 199 298 397 496 595 694 793 892 991 1090 1189 1288 1387 1486 1585 1684 1783 1882 1981

(W rite requests)

(m s) YAFFS FAT M NFS

Figure 6 Response time for sequential writes

3.4 Mounting time and heap memory usage

We measured mounting time and required heap

memory size when the 128Mbytes storage is full.
Table 2 summarizes the results. For FAT file system
we cannot measure heap memory size because we used
FAT file system component of pSOS without source
code. Compare to YAFFS, MNFS is 30 times faster for
mounting time and the heap memory usage is only 5%
of YAFFS usage.

Table 2 Mounting time and heap usages

 Mounting Time
(ms)

Heap Memory Usage
(Kbytes)

YAFFS 6,441 680
FAT 220 N/A

MNFS 185 34

4. Conclusion

MNFS is a new NAND flash file system for mobile
multimedia devices. It is designed for predictable and
uniform write latency, quick file system mount, and
small memory footprint. These goals are achieved by
hybrid mapping, block based file allocation, iBAT (in-
core only Block Allocation Table), and upward
directory representation. By experiments, we showed
that MNFS can satisfy the requirements successfully.

Currently, FAT file system over FTL is widely used.
However, it will not satisfy real-time requirement of
mobile multimedia devices as the bandwidth of
multimedia data is increasing. Because of irregular
response of FTL, a large size of temporal buffer is
required and it will influence the cost of devices.

MNFS can be a good solution for multimedia files.
However, there may be a requirement of non-
multimedia file which is small and frequently
updatable. For DRM (Digital Right Management) and
play list of multimedia files, non-multimedia file is
required in mobile multimedia devices. For the files
MNFS may inefficient for space and performance. To
solve problem, we have a plan to duplicate log-
structured file system over MNFS.

5. References

[1] M. Wu and W.Zwaenepoel, “eNVy: a non-volatile, main
memory storage system,” in Proceedings of 6th international
conference on Architectural support for programming
languages and operating systems, ACM Press, 1994, pp.86-
94.
[2] A. Kawaguchi, S.Nishioka, and H. Motoda, “A flash-
memory based file system,” in Proceedings of the USNIX
1995 Technical Conference, New Orleans, Louisiana, Jan.
1995, pp.155-164.
[3] Intel Corporation, “Understanding the flash translation
layer (FTL) specification,” Application Note 648, 1998.
[4] P. Torelli, “The Microsoft flash file system,” Dr. Dobb’s
Journal, Feb. 1995, pp. 62-72.
[5] M. Rosenblum, and J. K. Ousterhout, “The Design and
Implementation of a Log-Structured File System,” ACM
Transactions on Computer Systems, Vol. 10, No. 1, pp. 26-
51.
[6] D. Woodhouse, “JFFS: The Journaling Flash File
System,” in Ottawa Linux Symposium, 2001.
[7] Aleph One Company, “Yet Another Flash Filing
System,” http://www.aleph1.co.uk/yaffs
[8] Li-Pin Chang, Tei-Wei Kuo, “An efficient management
scheme for large-scale flash-memory storage systems,” in
Proceedings of the 2004 ACM symposium on Applied
computing, 2004, pp. 862-868.
[9] Li-Pin Chang, Tei-Wei Kuo, Shi-Wu Lo, “Real-time
garbage collection for flash-memory storage systems of real-
time embedded systems,” in ACM Transactions on
Embedded Computing Systems (TECS), Volume 3 Issue 4,
pp.837-863.
[10] SSFDC Forum, “SmartMediaTM Specification,”
http://www.ssfdc.or.jp
[11] Microsoft, “FAT: General Overview of On-Disk
Format,” Ver.1.03, 2000.
[12] Samsung Electronics, “16M x 8 Bit NAND Flash
Memory,” http://www.samsung.com
[13] Samsung Electronics, “512 Mb/1Gb OneNANDTM Flash
Memory,” http://www.samsung.com

212

